Se quiere saber la influencia del uso del viagra en relación al libido que se evalúa en el individuo que la consume.
Se tomaron tres niveles de dosis de viagra (1=efecto placebo, 2=dosis baja, 3=dosis alta) y también se tomó en cosideración el grado de libido de la pareja, porque puede influenciar la respuesta del individuo que toma la pastilla.
El experimento tomo a 45 parejas y se distribuyó al azar, incialmente se propuso 15 parejas para cada nivel del experimento, pero dado que cada pareja era voluntaria varios participantes no terminaron el experimento y sólo 30 parejas lo completó.
library(ggplot2)
library(car)
## Loading required package: carData
library(lmtest)
## Loading required package: zoo
##
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
##
## as.Date, as.Date.numeric
viagra <- read.table("ViagraCovariate.dat", header = TRUE)
viagra$dosis <- factor(viagra$dosis, labels = c("Placebo", "Dosis baja", "Dosis alta"))
viagra
## dosis libido Libido_pareja
## 1 Placebo 3 4
## 2 Placebo 2 1
## 3 Placebo 5 5
## 4 Placebo 2 1
## 5 Placebo 2 2
## 6 Placebo 2 2
## 7 Placebo 7 7
## 8 Placebo 2 4
## 9 Placebo 4 5
## 10 Dosis baja 7 5
## 11 Dosis baja 5 3
## 12 Dosis baja 3 1
## 13 Dosis baja 4 2
## 14 Dosis baja 4 2
## 15 Dosis baja 7 6
## 16 Dosis baja 5 4
## 17 Dosis baja 4 2
## 18 Dosis alta 9 1
## 19 Dosis alta 2 3
## 20 Dosis alta 6 5
## 21 Dosis alta 3 4
## 22 Dosis alta 4 3
## 23 Dosis alta 4 3
## 24 Dosis alta 4 2
## 25 Dosis alta 6 0
## 26 Dosis alta 4 1
## 27 Dosis alta 6 3
## 28 Dosis alta 2 0
## 29 Dosis alta 8 1
## 30 Dosis alta 5 0
library(ggplot2)
g1 <- ggplot(viagra, aes(dosis, libido))
g1 + geom_jitter(width = 0.05) +
stat_summary(fun.y = "mean", geom = "point", col = "red", shape = 15, size = 3)
\[ y_i = \mu + \alpha_i + \epsilon_{ij} \\ \epsilon_{ij} \sim \mathcal{N}(0, \sigma^2) \quad i.i.d. \]
m1 <- aov(libido ~ dosis, data = viagra)
anova(m1)
## Analysis of Variance Table
##
## Response: libido
## Df Sum Sq Mean Sq F value Pr(>F)
## dosis 2 16.844 8.4219 2.4159 0.1083
## Residuals 27 94.123 3.4860
shapiro.test(residuals(m1))
##
## Shapiro-Wilk normality test
##
## data: residuals(m1)
## W = 0.9292, p-value = 0.04676
shapiro.test(rstandard(m1))
##
## Shapiro-Wilk normality test
##
## data: rstandard(m1)
## W = 0.92873, p-value = 0.04543
shapiro.test(rstudent(m1))
##
## Shapiro-Wilk normality test
##
## data: rstudent(m1)
## W = 0.92518, p-value = 0.03662
library(car)
leveneTest(m1)
## Levene's Test for Homogeneity of Variance (center = median)
## Df F value Pr(>F)
## group 2 0.3256 0.7249
## 27
tk1 <- TukeyHSD(m1)
op <- par(no.readonly = TRUE)
par(mar = op$mar + c(0, 5, 0, 0))
plot(tk1, las = 1)
par(op)
library(ggplot2)
g2 <- ggplot(viagra, aes(Libido_pareja, libido, col = dosis))
g2 + geom_jitter(width = 0.05, height = 0.05) +
geom_smooth(method = "lm", aes(fill = dosis), alpha = 0.1) +
scale_color_manual(values = c("blue", "darkgreen", "red")) +
scale_fill_manual(values = c("blue", "darkgreen", "red"))
Nuevo modelo con covariable \[ y_i = \beta_0 + \beta_1 D_{2} + \beta_2 D_{3} + \beta_3 x_i + \epsilon_{ij} \\ \epsilon_{ij} \sim \mathcal{N}(0, \sigma^2) \quad i.i.d. \] Donde:
library(car)
m2 <- aov(libido ~ dosis + Libido_pareja, data = viagra)
Anova(m2)
## Anova Table (Type II tests)
##
## Response: libido
## Sum Sq Df F value Pr(>F)
## dosis 25.185 2 4.1419 0.02745 *
## Libido_pareja 15.076 1 4.9587 0.03483 *
## Residuals 79.047 26
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
m2l <- lm(libido ~ dosis + Libido_pareja, data = viagra)
summary(m2l)
##
## Call:
## lm(formula = libido ~ dosis + Libido_pareja, data = viagra)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.2622 -0.7899 -0.3230 0.8811 4.5699
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.7892 0.8671 2.063 0.0492 *
## dosisDosis baja 1.7857 0.8494 2.102 0.0454 *
## dosisDosis alta 2.2249 0.8028 2.771 0.0102 *
## Libido_pareja 0.4160 0.1868 2.227 0.0348 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.744 on 26 degrees of freedom
## Multiple R-squared: 0.2876, Adjusted R-squared: 0.2055
## F-statistic: 3.5 on 3 and 26 DF, p-value: 0.02954
op <- par(no.readonly = TRUE)
par(mfrow = c(2, 2))
plot(m2l)
par(op)
shapiro.test(residuals(m2l))
##
## Shapiro-Wilk normality test
##
## data: residuals(m2l)
## W = 0.94327, p-value = 0.1114
shapiro.test(rstandard(m2l))
##
## Shapiro-Wilk normality test
##
## data: rstandard(m2l)
## W = 0.9446, p-value = 0.121
shapiro.test(rstudent(m2l))
##
## Shapiro-Wilk normality test
##
## data: rstudent(m2l)
## W = 0.92734, p-value = 0.04175
library(car)
library(lmtest)
bartlett.test(libido ~ dosis, data = viagra)
##
## Bartlett test of homogeneity of variances
##
## data: libido by dosis
## Bartlett's K-squared = 1.1104, df = 2, p-value = 0.574
car::ncvTest(m2l)
## Non-constant Variance Score Test
## Variance formula: ~ fitted.values
## Chisquare = 1.153817 Df = 1 p = 0.2827515
lmtest::bptest(m2l, ~ Libido_pareja, studentize = FALSE, data = viagra)
##
## Breusch-Pagan test
##
## data: m2l
## BP = 1.046, df = 1, p-value = 0.3064
lmtest::bptest(m2l, ~ Libido_pareja, studentize = TRUE, data = viagra)
##
## studentized Breusch-Pagan test
##
## data: m2l
## BP = 0.6881, df = 1, p-value = 0.4068
library(car)
car::influenceIndexPlot(m2l)
library(car)
car::influencePlot(m2l)
## StudRes Hat CookD
## 7 1.5711252 0.2562590 0.20126041
## 15 0.5956225 0.2199011 0.02563739
## 18 3.1940828 0.0884045 0.18268737
## 29 2.3176228 0.0884045 0.11148247
viagra <- data.frame(viagra, predict(m2l, interval = "confidence"))
g3 <- ggplot(viagra, aes(Libido_pareja, libido, col = dosis, label = rownames(viagra)))
g3 + geom_line(aes(y = fit)) +
geom_ribbon(aes(ymin = lwr, ymax = upr, fill = dosis), alpha = 0.1) +
scale_color_manual(values = c("blue", "darkgreen", "red")) +
scale_fill_manual(values = c("blue", "darkgreen", "red")) +
geom_text(size = 3)
Nuevo modelo con covariable \[ y_i = \beta_0 + \beta_1 D_{2} + \beta_2 D_{3} + \beta_3 x_i + \beta_4 D_{2} x_i + \beta_5 D_{3} x_i + \epsilon_{ij} \\ \epsilon_{ij} \sim \mathcal{N}(0, \sigma^2) \quad i.i.d. \] Donde:
library(car)
m3 <- aov(libido ~ dosis + Libido_pareja + dosis:Libido_pareja, data = viagra)
Anova(m3)
## Anova Table (Type II tests)
##
## Response: libido
## Sum Sq Df F value Pr(>F)
## dosis 25.185 2 5.1556 0.01372 *
## Libido_pareja 15.076 1 6.1722 0.02035 *
## dosis:Libido_pareja 20.427 2 4.1815 0.02767 *
## Residuals 58.621 24
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
m3l <- lm(libido ~ dosis + Libido_pareja + dosis:Libido_pareja, data = viagra)
summary(m3l)
##
## Call:
## lm(formula = libido ~ dosis + Libido_pareja + dosis:Libido_pareja,
## data = viagra)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.2837 -0.6274 -0.1201 0.6299 3.9351
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.59416 1.05743 0.562 0.57940
## dosisDosis baja 1.71722 1.60191 1.072 0.29439
## dosisDosis alta 4.68950 1.26940 3.694 0.00114 **
## Libido_pareja 0.76299 0.26716 2.856 0.00872 **
## dosisDosis baja:Libido_pareja 0.05737 0.43403 0.132 0.89594
## dosisDosis alta:Libido_pareja -0.98174 0.38432 -2.554 0.01740 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.563 on 24 degrees of freedom
## Multiple R-squared: 0.4717, Adjusted R-squared: 0.3617
## F-statistic: 4.286 on 5 and 24 DF, p-value: 0.006295
op <- par(no.readonly = TRUE)
par(mfrow = c(2, 2))
plot(m3l)
par(op)
shapiro.test(residuals(m3l))
##
## Shapiro-Wilk normality test
##
## data: residuals(m3l)
## W = 0.94754, p-value = 0.1453
shapiro.test(rstandard(m3l))
##
## Shapiro-Wilk normality test
##
## data: rstandard(m3l)
## W = 0.95489, p-value = 0.2281
shapiro.test(rstudent(m3l))
##
## Shapiro-Wilk normality test
##
## data: rstudent(m3l)
## W = 0.93528, p-value = 0.06793
library(car)
library(lmtest)
bartlett.test(libido ~ dosis, data = viagra)
##
## Bartlett test of homogeneity of variances
##
## data: libido by dosis
## Bartlett's K-squared = 1.1104, df = 2, p-value = 0.574
car::ncvTest(m3l)
## Non-constant Variance Score Test
## Variance formula: ~ fitted.values
## Chisquare = 2.057503 Df = 1 p = 0.1514582
lmtest::bptest(m3l, ~ Libido_pareja, studentize = FALSE, data = viagra)
##
## Breusch-Pagan test
##
## data: m3l
## BP = 3.6786, df = 1, p-value = 0.05512
lmtest::bptest(m3l, ~ Libido_pareja, studentize = TRUE, data = viagra)
##
## studentized Breusch-Pagan test
##
## data: m3l
## BP = 2.1416, df = 1, p-value = 0.1434
library(car)
car::influenceIndexPlot(m3l)
library(car)
car::influencePlot(m3l)
## StudRes Hat CookD
## 7 0.9432328 0.4805195 0.137793595
## 15 -0.2115547 0.5209581 0.008448164
## 18 3.1112043 0.1081731 0.143707367
## 20 1.4812086 0.3581731 0.194388549
## 28 -2.6245943 0.2019231 0.233249917
viagra <- data.frame(viagra, predict(m3l, interval = "confidence"))
g3 <- ggplot(viagra, aes(Libido_pareja, libido, col = dosis, label = rownames(viagra)))
g3 + geom_line(aes(y = fit.1)) +
geom_ribbon(aes(ymin = lwr.1, ymax = upr.1, fill = dosis), alpha = 0.1) +
scale_color_manual(values = c("blue", "darkgreen", "red")) +
scale_fill_manual(values = c("blue", "darkgreen", "red")) +
geom_text(size = 3)
m4l <- lm(libido ~ dosis + Libido_pareja + dosis:Libido_pareja, data = viagra,
subset = -c(28))
car::Anova(m4l)
## Anova Table (Type II tests)
##
## Response: libido
## Sum Sq Df F value Pr(>F)
## dosis 26.732 2 6.8148 0.004740 **
## Libido_pareja 10.925 1 5.5701 0.027128 *
## dosis:Libido_pareja 29.312 2 7.4727 0.003159 **
## Residuals 45.110 23
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(m4l)
##
## Call:
## lm(formula = libido ~ dosis + Libido_pareja + dosis:Libido_pareja,
## data = viagra, subset = -c(28))
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.6867 -0.6867 -0.1201 0.5909 3.3614
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.59416 0.94756 0.627 0.536810
## dosisDosis baja 1.71722 1.43547 1.196 0.243774
## dosisDosis alta 5.52030 1.18072 4.675 0.000105 ***
## Libido_pareja 0.76299 0.23940 3.187 0.004103 **
## dosisDosis baja:Libido_pareja 0.05737 0.38893 0.148 0.884012
## dosisDosis alta:Libido_pareja -1.23889 0.35805 -3.460 0.002125 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.4 on 23 degrees of freedom
## Multiple R-squared: 0.5711, Adjusted R-squared: 0.4778
## F-statistic: 6.125 on 5 and 23 DF, p-value: 0.0009554
library(car)
influenceIndexPlot(m4l)