library(pid)
## Loading required package: ggplot2
## Loading required package: png
## Loading required package: FrF2
## Loading required package: DoE.base
## Loading required package: grid
## Loading required package: conf.design
##
## Attaching package: 'DoE.base'
## The following objects are masked from 'package:stats':
##
## aov, lm
## The following object is masked from 'package:graphics':
##
## plot.design
## The following object is masked from 'package:base':
##
## lengths
library(readxl)
library(ggplot2)
library(multcomp)
## Loading required package: mvtnorm
## Loading required package: survival
## Loading required package: TH.data
## Loading required package: MASS
##
## Attaching package: 'TH.data'
## The following object is masked from 'package:MASS':
##
## geyser
library(multcompView)
library(sandwich)
library(FrF2)
# Función auxiliar para hallar el error estándar de los resdiuales
# de un modelo "aov"
options(width=120)
errsdred<-function(modelo){
aovm<-anova(modelo)
return(sqrt(aovm$"Mean Sq"[length(aovm$"Mean Sq")]))
}
Un producto químico se produce en una cámara de presión. Se llevó a cabo un experimento factorial fraccionado para estudiar los factores que influencian en la tasa de filtración del producto obtenido. Los cuatro factores son: temperatura (A), presión (B), concentración de formaldehido (C) y velocidad de agitación (D). Cada uno de los factores se tomó a dos niveles.
Se realizó un experimento \(2^{4-1}_{IV}\).
library(pid)
tradeoff(runs = 8, factors = 4)
## With 8 experiments, and 4 factors:
## Resolution: IV
## Generator: D=ABC
## Aliasing (related ONLY to main effects and 2-factor interactions):
## Main effects are not aliased with 2-factor interactions.
## AB=CD
## AC=BD
## AD=BC
library(pid)
tradeOffTable()
La resolución se refiere al grado de alias que tienen las interacciones con los factores principales y entre si.
Así por ejemplo:
Resolución III. Ningún efecto principal se alia con otro efecto principal, pero los efectos principales se alian con interacciones dobles y estas dobles entre si.
Resolución IV. Los efectos principales no se alian con otros principales con con interacciones dobles. Pero las interacciones dobles pueden aliarse entre ellas.
Resolución V. Los efectos principales no se alian con efectos principales no con interacciones dobles. Y ninguna interacción doble se alía entre ellas.
library(readxl)
tasaFilt <- read_excel("tasaFiltracion.xlsx")
tasaFilt
## # A tibble: 8 x 5
## A B C D TF
## <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 -1. -1. -1. -1. 45.
## 2 1. -1. -1. 1. 100.
## 3 -1. 1. -1. 1. 45.
## 4 1. 1. -1. -1. 65.
## 5 -1. -1. 1. 1. 75.
## 6 1. -1. 1. -1. 60.
## 7 -1. 1. 1. -1. 80.
## 8 1. 1. 1. 1. 96.
tasaFilt$A <- factor(tasaFilt$A, labels = c("b-T", "a-T"))
tasaFilt$B <- factor(tasaFilt$B, labels = c("b-P", "a-P"))
tasaFilt$C <- factor(tasaFilt$C, labels = c("b-H2C=O", "a-H2C=O"))
tasaFilt$D <- factor(tasaFilt$D, labels = c("b-V", "a-V"))
tasaFilt
## # A tibble: 8 x 5
## A B C D TF
## <fct> <fct> <fct> <fct> <dbl>
## 1 b-T b-P b-H2C=O b-V 45.
## 2 a-T b-P b-H2C=O a-V 100.
## 3 b-T a-P b-H2C=O a-V 45.
## 4 a-T a-P b-H2C=O b-V 65.
## 5 b-T b-P a-H2C=O a-V 75.
## 6 a-T b-P a-H2C=O b-V 60.
## 7 b-T a-P a-H2C=O b-V 80.
## 8 a-T a-P a-H2C=O a-V 96.
library(ggplot2)
g1 <- ggplot(tasaFilt, aes(A, TF, col = B))
g1 + geom_point(size = 5) + facet_grid(C ~ D)
ggplot(tasaFilt, aes(A, TF)) +
geom_point() +
stat_summary(fun.y = mean, geom = "line", lwd = 2, aes(group = 1))
ggplot(tasaFilt, aes(B, TF)) +
geom_point() +
stat_summary(fun.y = mean, geom = "line", lwd = 2, aes(group = 1))
ggplot(tasaFilt, aes(C, TF)) +
geom_point() +
stat_summary(fun.y = mean, geom = "line", lwd = 2, aes(group = 1))
ggplot(tasaFilt, aes(D, TF)) +
geom_point() +
stat_summary(fun.y = mean, geom = "line", lwd = 2, aes(group = 1))
\[ y_{ijklm} = \mu + \alpha_i + \beta_j + \gamma_k + \delta_l + \\ (\alpha\beta)_{ij} + (\alpha\gamma)_{ik} + (\alpha\delta)_{il} + \\ \epsilon_{ijklm} \]
Donde: \[ \epsilon_{ijklm} \sim \mathcal{N}(0, \sigma^2) \quad i.i.d. \]
Además, se hacen los siguientes supuestos con respecto a las interacciones dobles:
\[ (\alpha\beta)_{ij} = (\gamma\delta)_{kl} \\ (\alpha\gamma)_{ik} = (\beta\delta)_{jl} \\ (\alpha\delta)_{il} = (\beta\gamma)_{jk} \] Todas las demás interacciones de orden superior se suponen no significactivas.
modelo1 <- aov(TF ~ A + B + C + D + A:B + A:C + A:D, data = tasaFilt)
summary(modelo1)
## Df Sum Sq Mean Sq
## A 1 722.0 722.0
## B 1 4.5 4.5
## C 1 392.0 392.0
## D 1 544.5 544.5
## A:B 1 2.0 2.0
## A:C 1 684.5 684.5
## A:D 1 722.0 722.0
library(pid)
paretoPlot(modelo1)
efectos <- unlist(model.tables(modelo1))
efectos <- efectos[substring(names(efectos),1,6) == "tables"]
names(efectos)<-gsub("tables.", "", names(efectos))
qqR <- qqnorm(efectos, xlim = c(-3, 3), ylim = c(-15,15), pch = 19, cex = 0.5)
qqline(efectos)
with(qqR,text(x, y, labels = names(efectos), cex = 0.7, pos = 3))
modelo2 <- aov(TF ~ A + B + C + D + A:C + A:D, data = tasaFilt)
summary(modelo2)
## Df Sum Sq Mean Sq F value Pr(>F)
## A 1 722.0 722.0 361.00 0.0335 *
## B 1 4.5 4.5 2.25 0.3743
## C 1 392.0 392.0 196.00 0.0454 *
## D 1 544.5 544.5 272.25 0.0385 *
## A:C 1 684.5 684.5 342.25 0.0344 *
## A:D 1 722.0 722.0 361.00 0.0335 *
## Residuals 1 2.0 2.0
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
modelo3 <- aov(TF ~ A + C + D + A:C + A:D, data = tasaFilt)
summary(modelo3)
## Df Sum Sq Mean Sq F value Pr(>F)
## A 1 722.0 722.0 222.2 0.00447 **
## C 1 392.0 392.0 120.6 0.00819 **
## D 1 544.5 544.5 167.5 0.00592 **
## A:C 1 684.5 684.5 210.6 0.00471 **
## A:D 1 722.0 722.0 222.2 0.00447 **
## Residuals 2 6.5 3.3
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# Normalidad
residualesEstand <- rstandard(modelo3)
shapiro.test(residualesEstand)
##
## Shapiro-Wilk normality test
##
## data: residualesEstand
## W = 0.90039, p-value = 0.2913
# Igualdad de varianza
bartlett.test(TF ~ A, data = tasaFilt)
##
## Bartlett test of homogeneity of variances
##
## data: TF by A
## Bartlett's K-squared = 0.021022, df = 1, p-value = 0.8847
bartlett.test(TF ~ B, data = tasaFilt)
##
## Bartlett test of homogeneity of variances
##
## data: TF by B
## Bartlett's K-squared = 0.014884, df = 1, p-value = 0.9029
bartlett.test(TF ~ C, data = tasaFilt)
##
## Bartlett test of homogeneity of variances
##
## data: TF by C
## Bartlett's K-squared = 0.76337, df = 1, p-value = 0.3823
bartlett.test(TF ~ D, data = tasaFilt)
##
## Bartlett test of homogeneity of variances
##
## data: TF by D
## Bartlett's K-squared = 0.75823, df = 1, p-value = 0.3839
bartlett.test(TF ~ paste(A,C), data = tasaFilt)
##
## Bartlett test of homogeneity of variances
##
## data: TF by paste(A, C)
## Bartlett's K-squared = Inf, df = 3, p-value < 2.2e-16
bartlett.test(TF ~ paste(A,D), data = tasaFilt)
##
## Bartlett test of homogeneity of variances
##
## data: TF by paste(A, D)
## Bartlett's K-squared = 3.722, df = 3, p-value = 0.2931
library(multcomp)
library(multcompView)
library(sandwich)
tasaFilt$AC <- with(tasaFilt, interaction(A, C))
modelo3_1 <- aov(TF ~ -1 + AC, data = tasaFilt)
summary(modelo3_1)
## Df Sum Sq Mean Sq F value Pr(>F)
## AC 4 41843 10461 32.87 0.00256 **
## Residuals 4 1273 318
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
compMultHetero <- glht(modelo3_1, linfct = mcp(AC = "Tukey"), vcov = sandwich)
summary(compMultHetero)
##
## Simultaneous Tests for General Linear Hypotheses
##
## Multiple Comparisons of Means: Tukey Contrasts
##
##
## Fit: aov.default(formula = TF ~ -1 + AC, data = tasaFilt)
##
## Linear Hypotheses:
## Estimate Std. Error t value Pr(>|t|)
## a-T.b-H2C=O - b-T.b-H2C=O == 0 37.500 12.374 3.030 0.106
## b-T.a-H2C=O - b-T.b-H2C=O == 0 32.500 1.768 18.385 <0.001 ***
## a-T.a-H2C=O - b-T.b-H2C=O == 0 33.000 12.728 2.593 0.161
## b-T.a-H2C=O - a-T.b-H2C=O == 0 -5.000 12.500 -0.400 0.971
## a-T.a-H2C=O - a-T.b-H2C=O == 0 -4.500 17.752 -0.253 0.992
## a-T.a-H2C=O - b-T.a-H2C=O == 0 0.500 12.850 0.039 1.000
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
op <- par(no.readonly = TRUE)
par(mar=op$mar+c(0,12,0,0))
plot(compMultHetero)
par(op)
tasaFilt$TFp <- predict(modelo3)
g1 <- ggplot(tasaFilt, aes(A, TF, col = C))
g1 + geom_point() + facet_grid(. ~ D) +
geom_line(aes(A, TFp, group = C)) +
geom_point(aes(A, TFp, col = C), shape = 17)
model.tables(modelo3, se = TRUE)
## Tables of effects
##
## A
## A
## b-T a-T
## -9.5 9.5
##
## C
## C
## b-H2C=O a-H2C=O
## -7 7
##
## D
## D
## b-V a-V
## -8.25 8.25
##
## A:C
## C
## A b-H2C=O a-H2C=O
## b-T -9.25 9.25
## a-T 9.25 -9.25
##
## A:D
## D
## A b-V a-V
## b-T 9.5 -9.5
## a-T -9.5 9.5
##
## Standard errors of effects
## A C D A:C A:D
## 0.9014 0.9014 0.9014 1.2748 1.2748
## replic. 4 4 4 2 2
model.tables(modelo3, se = TRUE, type = "mean")
## Tables of means
## Grand mean
##
## 70.75
##
## A
## A
## b-T a-T
## 61.25 80.25
##
## C
## C
## b-H2C=O a-H2C=O
## 63.75 77.75
##
## D
## D
## b-V a-V
## 62.5 79.0
##
## A:C
## C
## A b-H2C=O a-H2C=O
## b-T 45.0 77.5
## a-T 82.5 78.0
##
## A:D
## D
## A b-V a-V
## b-T 62.5 60.0
## a-T 62.5 98.0
##
## Standard errors for differences of means
## A C D A:C A:D
## 1.275 1.275 1.275 1.803 1.803
## replic. 4 4 4 2 2
errsdred(modelo3)
## [1] 1.802776
library(readxl)
tasaFilt2 <- read_excel("tasaFiltracion2.xlsx")
tasaFilt2
## # A tibble: 16 x 6
## A B C D TF Etapa
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 -1. -1. -1. -1. 45. 1.
## 2 1. -1. -1. 1. 100. 1.
## 3 -1. 1. -1. 1. 45. 1.
## 4 1. 1. -1. -1. 65. 1.
## 5 -1. -1. 1. 1. 75. 1.
## 6 1. -1. 1. -1. 60. 1.
## 7 -1. 1. 1. -1. 80. 1.
## 8 1. 1. 1. 1. 96. 1.
## 9 -1. -1. -1. 1. 43. 2.
## 10 1. -1. -1. -1. 71. 2.
## 11 -1. 1. -1. -1. 48. 2.
## 12 1. 1. -1. 1. 104. 2.
## 13 -1. -1. 1. -1. 68. 2.
## 14 1. -1. 1. 1. 86. 2.
## 15 -1. 1. 1. 1. 70. 2.
## 16 1. 1. 1. -1. 65. 2.
tasaFilt2$A <- factor(tasaFilt2$A, labels = c("b-T", "a-T"))
tasaFilt2$B <- factor(tasaFilt2$B, labels = c("b-P", "a-P"))
tasaFilt2$C <- factor(tasaFilt2$C, labels = c("b-H2C=O", "a-H2C=O"))
tasaFilt2$D <- factor(tasaFilt2$D, labels = c("b-V", "a-V"))
tasaFilt2$Etapa <- factor(tasaFilt2$Etapa, labels = c("e-1", "e-2"))
tasaFilt2
## # A tibble: 16 x 6
## A B C D TF Etapa
## <fct> <fct> <fct> <fct> <dbl> <fct>
## 1 b-T b-P b-H2C=O b-V 45. e-1
## 2 a-T b-P b-H2C=O a-V 100. e-1
## 3 b-T a-P b-H2C=O a-V 45. e-1
## 4 a-T a-P b-H2C=O b-V 65. e-1
## 5 b-T b-P a-H2C=O a-V 75. e-1
## 6 a-T b-P a-H2C=O b-V 60. e-1
## 7 b-T a-P a-H2C=O b-V 80. e-1
## 8 a-T a-P a-H2C=O a-V 96. e-1
## 9 b-T b-P b-H2C=O a-V 43. e-2
## 10 a-T b-P b-H2C=O b-V 71. e-2
## 11 b-T a-P b-H2C=O b-V 48. e-2
## 12 a-T a-P b-H2C=O a-V 104. e-2
## 13 b-T b-P a-H2C=O b-V 68. e-2
## 14 a-T b-P a-H2C=O a-V 86. e-2
## 15 b-T a-P a-H2C=O a-V 70. e-2
## 16 a-T a-P a-H2C=O b-V 65. e-2
library(ggplot2)
g1 <- ggplot(tasaFilt2, aes(A, TF, col = B))
g1 + geom_point(size = 5) + facet_grid(C ~ D)
\[ y_{ijklmo} = \mu + \alpha_i + \beta_j + \gamma_k + \delta_l + \kappa_{o}\\ (\alpha\beta)_{ij} + (\alpha\gamma)_{ik} + (\alpha\delta)_{il} + \\ \epsilon_{ijklmo} \]
Donde: \[ \epsilon_{ijklmo} \sim \mathcal{N}(0, \sigma^2) \quad i.i.d. \]
modelo4 <- aov(TF ~ A + B + C + D + A*B*C*D + Etapa, data = tasaFilt2)
summary(modelo4)
## Df Sum Sq Mean Sq
## A 1 1870.6 1870.6
## B 1 39.1 39.1
## C 1 390.1 390.1
## D 1 855.6 855.6
## Etapa 1 7.6 7.6
## A:B 1 0.1 0.1
## A:C 1 1314.1 1314.1
## B:C 1 22.6 22.6
## A:D 1 1105.6 1105.6
## B:D 1 0.6 0.6
## C:D 1 5.1 5.1
## A:B:C 1 14.1 14.1
## A:B:D 1 68.1 68.1
## A:C:D 1 10.6 10.6
## B:C:D 1 27.6 27.6
library(pid)
paretoPlot(modelo4)
efectos <- unlist(model.tables(modelo4))
efectos <- efectos[substring(names(efectos),1,6)=="tables"]
names(efectos)<-gsub("tables.","",names(efectos))
qqR<-qqnorm(efectos, xlim = c(-3, 3), ylim = c(-15,15), pch = 19, cex = 0.5)
qqline(efectos)
with(qqR,text(x,y,labels=names(efectos),cex=0.7,pos=3))
modelo5 <- aov(TF ~ A + B + C + D + A*B*C*D + Etapa - A:B:C:D,
data = tasaFilt2)
summary(modelo5)
## Df Sum Sq Mean Sq
## A 1 1870.6 1870.6
## B 1 39.1 39.1
## C 1 390.1 390.1
## D 1 855.6 855.6
## Etapa 1 7.6 7.6
## A:B 1 0.1 0.1
## A:C 1 1314.1 1314.1
## B:C 1 22.6 22.6
## A:D 1 1105.6 1105.6
## B:D 1 0.6 0.6
## C:D 1 5.1 5.1
## A:B:C 1 14.1 14.1
## A:B:D 1 68.1 68.1
## A:C:D 1 10.6 10.6
## B:C:D 1 27.6 27.6
modelo6 <- aov(TF ~ A + B + C + D + A*B*C*D + Etapa - A:B:C:D - A:C:D,
data = tasaFilt2)
summary(modelo6)
## Df Sum Sq Mean Sq F value Pr(>F)
## A 1 1870.6 1870.6 177.095 0.0477 *
## B 1 39.1 39.1 3.698 0.3053
## C 1 390.1 390.1 36.929 0.1038
## D 1 855.6 855.6 81.000 0.0704 .
## Etapa 1 7.6 7.6 0.716 0.5529
## A:B 1 0.1 0.1 0.006 0.9511
## A:C 1 1314.1 1314.1 124.408 0.0569 .
## B:C 1 22.6 22.6 2.136 0.3820
## A:D 1 1105.6 1105.6 104.669 0.0620 .
## B:D 1 0.6 0.6 0.053 0.8556
## C:D 1 5.1 5.1 0.479 0.6145
## A:B:C 1 14.1 14.1 1.331 0.4546
## A:B:D 1 68.1 68.1 6.444 0.2389
## B:C:D 1 27.6 27.6 2.609 0.3529
## Residuals 1 10.6 10.6
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
modelo6 <- aov(TF ~ A + B + C + D + A*B*C*D + Etapa -
A:B:C:D - A:C:D - A:B:C - B:C:D - A:B:D -
A:B - B:D - C:D - B:C - Etapa - B,
data = tasaFilt2)
summary(modelo6)
## Df Sum Sq Mean Sq F value Pr(>F)
## A 1 1870.6 1870.6 95.86 1.93e-06 ***
## C 1 390.1 390.1 19.99 0.0012 **
## D 1 855.6 855.6 43.85 5.92e-05 ***
## A:C 1 1314.1 1314.1 67.34 9.41e-06 ***
## A:D 1 1105.6 1105.6 56.66 2.00e-05 ***
## Residuals 10 195.1 19.5
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# Normalidad
residualesStud <- rstudent(modelo6)
shapiro.test(residualesStud)
##
## Shapiro-Wilk normality test
##
## data: residualesStud
## W = 0.95297, p-value = 0.5381
# Igualdad de varianza
bartlett.test(TF ~ A, data = tasaFilt2)
##
## Bartlett test of homogeneity of variances
##
## data: TF by A
## Bartlett's K-squared = 0.12214, df = 1, p-value = 0.7267
bartlett.test(TF ~ B, data = tasaFilt2)
##
## Bartlett test of homogeneity of variances
##
## data: TF by B
## Bartlett's K-squared = 0.040578, df = 1, p-value = 0.8404
bartlett.test(TF ~ C, data = tasaFilt2)
##
## Bartlett test of homogeneity of variances
##
## data: TF by C
## Bartlett's K-squared = 3.3143, df = 1, p-value = 0.06868
bartlett.test(TF ~ D, data = tasaFilt2)
##
## Bartlett test of homogeneity of variances
##
## data: TF by D
## Bartlett's K-squared = 3.0781, df = 1, p-value = 0.07935
bartlett.test(TF ~ paste(A,C), data = tasaFilt2)
##
## Bartlett test of homogeneity of variances
##
## data: TF by paste(A, C)
## Bartlett's K-squared = 11.332, df = 3, p-value = 0.01006
bartlett.test(TF ~ paste(A,D), data = tasaFilt2)
##
## Bartlett test of homogeneity of variances
##
## data: TF by paste(A, D)
## Bartlett's K-squared = 5.0452, df = 3, p-value = 0.1685
library(multcomp)
library(multcompView)
library(sandwich)
tasaFilt2$AC <- with(tasaFilt, interaction(A, C))
modelo6_1 <- aov(TF ~ -1 + AC, data = tasaFilt2)
summary(modelo6_1)
## Df Sum Sq Mean Sq F value Pr(>F)
## AC 4 82115 20529 114.2 1.92e-09 ***
## Residuals 12 2156 180
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
compMultHetero <- glht(modelo6_1, linfct = mcp(AC = "Tukey"), vcov = sandwich)
summary(compMultHetero)
##
## Simultaneous Tests for General Linear Hypotheses
##
## Multiple Comparisons of Means: Tukey Contrasts
##
##
## Fit: aov.default(formula = TF ~ -1 + AC, data = tasaFilt2)
##
## Linear Hypotheses:
## Estimate Std. Error t value Pr(>|t|)
## a-T.b-H2C=O - b-T.b-H2C=O == 0 39.750 8.641 4.600 0.00237 **
## b-T.a-H2C=O - b-T.b-H2C=O == 0 28.000 2.494 11.228 < 0.001 ***
## a-T.a-H2C=O - b-T.b-H2C=O == 0 31.500 7.448 4.229 0.00445 **
## b-T.a-H2C=O - a-T.b-H2C=O == 0 -11.750 8.905 -1.320 0.53487
## a-T.a-H2C=O - a-T.b-H2C=O == 0 -8.250 11.338 -0.728 0.86880
## a-T.a-H2C=O - b-T.a-H2C=O == 0 3.500 7.752 0.451 0.96313
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
op <- par(no.readonly = TRUE)
par(mar = op$mar + c(0, 12, 0, 0))
plot(compMultHetero)
par(op)
tasaFilt2$TFp <- predict(modelo6)
g1 <- ggplot(tasaFilt2, aes(A, TF, col = C))
g1 + geom_point() + facet_grid(. ~ D) +
geom_line(aes(A, TFp, group = C)) +
geom_point(aes(A, TFp, col = C), shape = 17)
model.tables(modelo6, se = TRUE)
## Tables of effects
##
## A
## A
## b-T a-T
## -10.812 10.812
##
## C
## C
## b-H2C=O a-H2C=O
## -4.938 4.938
##
## D
## D
## b-V a-V
## -7.313 7.313
##
## A:C
## C
## A b-H2C=O a-H2C=O
## b-T -9.062 9.062
## a-T 9.062 -9.063
##
## A:D
## D
## A b-V a-V
## b-T 8.312 -8.312
## a-T -8.312 8.312
##
## Standard errors of effects
## A C D A:C A:D
## 1.562 1.562 1.562 2.209 2.209
## replic. 8 8 8 4 4
model.tables(modelo6, se = TRUE, type = "mean")
## Tables of means
## Grand mean
##
## 70.0625
##
## A
## A
## b-T a-T
## 59.25 80.88
##
## C
## C
## b-H2C=O a-H2C=O
## 65.12 75.00
##
## D
## D
## b-V a-V
## 62.75 77.38
##
## A:C
## C
## A b-H2C=O a-H2C=O
## b-T 45.25 73.25
## a-T 85.00 76.75
##
## A:D
## D
## A b-V a-V
## b-T 60.25 58.25
## a-T 65.25 96.50
##
## Standard errors for differences of means
## A C D A:C A:D
## 2.209 2.209 2.209 3.123 3.123
## replic. 8 8 8 4 4
errsdred(modelo6)
## [1] 4.417296
library(FrF2)
FrF2(8, 4)
## A B C D
## 1 1 -1 1 -1
## 2 1 1 -1 -1
## 3 -1 -1 1 1
## 4 -1 1 -1 1
## 5 -1 -1 -1 -1
## 6 1 -1 -1 1
## 7 1 1 1 1
## 8 -1 1 1 -1
## class=design, type= FrF2
library(FrF2)
FrF2(64, 8)
## A B C D E F G H
## 1 1 -1 1 -1 1 -1 1 1
## 2 1 1 -1 -1 -1 1 1 -1
## 3 -1 -1 -1 -1 -1 1 1 -1
## 4 -1 -1 -1 -1 1 -1 1 -1
## 5 1 1 -1 1 1 1 -1 1
## 6 1 -1 -1 -1 -1 1 -1 1
## 7 1 1 -1 -1 1 1 1 1
## 8 -1 1 1 -1 1 1 1 -1
## 9 -1 1 -1 -1 1 1 -1 -1
## 10 1 1 1 -1 1 1 -1 1
## 11 -1 1 1 -1 -1 -1 1 -1
## 12 1 -1 1 -1 1 1 1 -1
## 13 1 1 -1 -1 1 -1 1 -1
## 14 -1 1 -1 1 1 -1 1 1
## 15 1 -1 -1 1 -1 1 1 1
## 16 1 1 -1 1 -1 1 -1 -1
## 17 1 -1 1 -1 -1 -1 1 -1
## 18 -1 -1 1 1 -1 -1 1 1
## 19 1 1 1 -1 1 -1 -1 -1
## 20 -1 -1 -1 1 -1 1 -1 -1
## 21 1 -1 1 -1 -1 1 1 1
## 22 -1 -1 -1 1 1 -1 -1 -1
## 23 -1 1 1 1 1 -1 -1 1
## 24 -1 -1 -1 1 1 1 -1 1
## 25 1 1 1 1 -1 1 1 -1
## 26 -1 -1 1 -1 1 1 -1 1
## 27 1 -1 1 1 -1 -1 -1 -1
## 28 -1 1 1 1 -1 1 -1 1
## 29 -1 1 -1 -1 -1 1 -1 1
## 30 -1 1 -1 1 1 1 1 -1
## 31 1 -1 -1 1 1 -1 1 1
## 32 -1 1 -1 1 -1 1 1 1
## 33 1 1 1 -1 -1 1 -1 -1
## 34 1 -1 -1 -1 1 -1 -1 1
## 35 1 -1 -1 1 1 1 1 -1
## 36 -1 1 1 -1 1 -1 1 1
## 37 1 1 1 -1 -1 -1 -1 1
## 38 -1 1 1 1 -1 -1 -1 -1
## 39 -1 -1 1 -1 1 -1 -1 -1
## 40 -1 -1 1 1 -1 1 1 -1
## 41 1 1 1 1 1 1 1 1
## 42 -1 1 1 -1 -1 1 1 1
## 43 -1 -1 1 1 1 -1 1 -1
## 44 -1 -1 1 1 1 1 1 1
## 45 -1 1 -1 -1 -1 -1 -1 -1
## 46 1 1 -1 1 1 -1 -1 -1
## 47 1 -1 -1 -1 1 1 -1 -1
## 48 1 -1 1 1 1 -1 -1 1
## 49 1 1 -1 1 -1 -1 -1 1
## 50 1 -1 1 1 1 1 -1 -1
## 51 -1 -1 -1 1 -1 -1 -1 1
## 52 1 1 -1 -1 -1 -1 1 1
## 53 -1 1 -1 1 -1 -1 1 -1
## 54 1 -1 -1 -1 -1 -1 -1 -1
## 55 1 -1 -1 1 -1 -1 1 -1
## 56 -1 -1 -1 -1 -1 -1 1 1
## 57 -1 -1 -1 -1 1 1 1 1
## 58 -1 -1 1 -1 -1 1 -1 -1
## 59 -1 1 -1 -1 1 -1 -1 1
## 60 1 1 1 1 -1 -1 1 1
## 61 -1 -1 1 -1 -1 -1 -1 1
## 62 1 -1 1 1 -1 1 -1 1
## 63 -1 1 1 1 1 1 -1 -1
## 64 1 1 1 1 1 -1 1 -1
## class=design, type= FrF2
El diseño de Plackett-Burman es un diseño de dos niveles de resolución III. Recordemos que en este diseño se supone que las interacciones dobles no son significativas porque están aliadas con los efectos principales.
¿Cuándo usar el diseño Plackett-Burman?:
library(FrF2)
pb(12, 11)
## A B C D E F G H J K L
## 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
## 2 1 -1 1 1 -1 1 1 1 -1 -1 -1
## 3 -1 1 -1 1 1 -1 1 1 1 -1 -1
## 4 1 1 1 -1 -1 -1 1 -1 1 1 -1
## 5 1 -1 1 1 1 -1 -1 -1 1 -1 1
## 6 -1 1 1 1 -1 -1 -1 1 -1 1 1
## 7 -1 1 1 -1 1 1 1 -1 -1 -1 1
## 8 1 1 -1 -1 -1 1 -1 1 1 -1 1
## 9 -1 -1 -1 1 -1 1 1 -1 1 1 1
## 10 -1 -1 1 -1 1 1 -1 1 1 1 -1
## 11 1 1 -1 1 1 1 -1 -1 -1 1 -1
## 12 1 -1 -1 -1 1 -1 1 1 -1 1 1
## class=design, type= pb