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Xiao and colleagues re-examined 471 datasets from the literature in a major study comparing two common
procedures for fitting the allometric equation y = axb to bivariate data (Xiao et al., 2011). One of the procedures was
the traditional allometric method, whereby the model for a straight line fitted to logarithmic transformations of the
original data is back-transformed to form a two-parameter power function with multiplicative, lognormal,
heteroscedastic error on the arithmetic scale. The other procedure was standard nonlinear regression, whereby a
two-parameter power function with additive, normal, homoscedastic error is fitted directly to untransformed data
by nonlinear least squares. Xiao and colleagues articulated a simple (but explicit) protocol for fitting and comparing
the alternative models, and then used the protocol to examine each of the datasets in their compilation. The
traditional method was said to provide a better fit in 69% of the cases and an equivalent fit in another 15%, so the
investigation appeared to validate findings from a large majority of prior studies on allometric variation. However,
focus for the investigation by Xiao and colleagues was overly narrow, and statistical models apparently were not
validated graphically in the scale of measurement. The present study re-examined a subset of the cases using a
larger pool of candidate models and graphical validation, and discovered complexities that were overlooked in their
investigation. Some datasets that appeared to be described better by the traditional method actually were unsuited
for use in an allometric analysis, whereas other datasets were not described adequately by a two-parameter power
function, regardless of how the model was fitted. Thus, conclusions reached by Xiao and colleagues are not well
supported and their paradigm for fitting allometric equations is unreliable. Future investigations of allometric
variation should adopt a more holistic approach and incorporate graphical validation on the original arithmetic
scale. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 113, 1167–1178.
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INTRODUCTION

Biologists have recently witnessed a vigorous debate
about methods for fitting statistical models to
bivariate data of the kind commonly used in studies of
allometric variation (Kerkhoff & Enquist, 2009;
Packard, 2009; Cawley & Janacek, 2010; Packard,
Boardman & Birchard, 2010). The debate has
centered on two common procedures. One of the pro-
cedures is the traditional allometric method, whereby
a straight line with additive, normal, homoscedastic
error first is fitted to logarithmic transformations and
the resulting model:

log log log ,y a b x Ni i i i( ) = ( ) + ( ) + ( )ε ε σ∼ 0 2 [1]

then is back-transformed (exponentiated) to form a
two-parameter power function with multiplicative,
lognormal, heteroscedastic error:

y ax Ni i
b

i i*= ( ) ( )exp ,ε ε σ∼ 0 2 [2]

on the arithmetic (linear) scale. The other method is
standard nonlinear regression, whereby a model for a
two-parameter power function with additive, normal,
homoscedastic error:

y ax Ni i
b

i i= + ( )ε ε σ∼ 0 2, [3]

is fitted directly to untransformed observations by
nonlinear least squares. The alternative procedures
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commonly yield very different estimates for
coefficients in fitted models, so the debate and its
outcome are important to all those who are concerned
with describing and interpreting patterns of
allometric variation.

The issue appeared to be resolved when four differ-
ent research groups recently reported (1) that the
traditional method is generally superior to standard
nonlinear regression for describing allometric varia-
tion and (2) that lognormal error is more common
than normal error in data for both plants and animals
(Mascaro et al., 2011, 2014; Xiao et al., 2011;
Ballantyne, 2013; Lai et al., 2013). These conclusions
were based primarily on Akaike’s information crite-
rion (AIC), which was used in all four studies to
discriminate between the alternative models and
which typically was lower (better) for models fitted by
traditional allometry than for those fitted by standard
nonlinear regression. The four studies apparently
validated the results of published research that made
use of the traditional allometric method and implic-
itly (or even explicitly) encouraged investigators to
continue to use the traditional method in future work
on allometric variation.

However, results of the investigations are not as
clear-cut as they appear to be. First, the studies were
narrowly focused on a pair of two-parameter power
models [Mascaro et al. (2011, 2014) considered a
third possibility but did not pursue its implications]
and questions of general importance about quality
of fit were not addressed. Second, comparisons of
error structure for the alternative models were
equivocal because lognormality was confounded with
heteroscedasticity in models fitted by the traditional
procedure and normality with homoscedasticity in
models fitted by standard nonlinear regression
(Packard, 2014a). In other words, differences in per-
formance that were attributed to differences in dis-
tributions for residuals (normal versus lognormal)
could just as easily have been a result of differences in
variance (homoscedastic versus heteroscedastic). For
these several reasons, conclusions of the investiga-
tions are not well supported.

The present critique focuses on the investigation by
Xiao et al. (2011) because it was undertaken specifi-
cally to compare the aforementioned methods for
fitting allometric equations to bivariate observations
and because of the extraordinary sample that was
compiled for study. The investigation was based on a
re-examination of 471 datasets gleaned from the lit-
erature (compared to 1, 4, and 6 datasets in the three
other investigations) and, consequently, has the
greatest potential to influence the conduct of future
research on allometric variation. The present study
re-analyzed four of the datasets compiled by Xiao
et al. (2011: supplement 1) to illustrate complexities

that were overlooked in the course of their investiga-
tion and that cast doubt on the reliability of their
paradigm for fitting statistical models to bivariate
data. Each of the datasets is referenced only by the
identification number used by Xiao et al. (2011) and
predictor and response variables are labelled only as
x and y, respectively; these conventions also were
followed by Xiao et al. (2011). Information on sources
for the data are available in their appendix B (Xiao
et al., 2011). The order of presentation for examples
in the present study illustrates a spectrum in the
quality of datasets and in the goodness of fit of models
estimated by the traditional allometric method. Xiao
et al. (2011) also performed Monte Carlo simulations,
but the outcome of the simulations was equivocal
because of the narrow focus on the aforementioned
models for simple power functions and because of an
element of circularity in the design and execution of
this component of the investigation.

MATERIAL AND METHODS

The first step in each of the four case studies pre-
sented here was to display logarithmic transforma-
tions (base 10) of the original data on a bivariate
plot and then evaluate the assumption of linearity
that is fundamental to application of the traditional
allometric method (Reeve, 1940; Kavanagh &
Richards, 1942; Richards & Kavanagh, 1945). The
assumption was evaluated by fitting both a straight
line and a quadratic polynomial by the method of
least squares and by comparing the fits by nested
analysis of variance (Ritz & Streibig, 2008: 103). If
the quadratic was not a significantly better fit, the
assumption of linearity was judged to be satisfied. A
plot of standardized residuals against fitted values
was also examined to assess the assumption of
homoscedasticity and to identify potential outliers.

A two-parameter power function with multiplica-
tive, lognormal, heteroscedastic error [2] then was
estimated on the original scale by back-transforming
the model for the straight line fitted to logarithms [1].
Eight regression models, with different functional
form and different assumptions about random varia-
tion, next were fitted directly to untransformed data,
thereby creating a pool of nine candidate models for
describing the distribution of the original observa-
tions. An even larger pool of candidates could have
been assembled (Marshall, Bode & White, 2013), but
the additional models would have been substantially
more complex than the simple ones used in the
present study.

Four of the regression models in the candidate pool
(i.e. straight lines and power functions with and
without intercepts) were fitted by standard linear
and nonlinear least squares. The linear models were
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included because they provide a different way to fit a
power function with an allometric exponent of 1
(Huxley, 1932: 241). The four models assumed addi-
tive, normal, homoscedastic error and were of the
general form:

y f x Ni i i i= ( ) + ∼ ( ), ,β ε ε σ0 2 [4]

where β is a vector of parameters in a linear or
nonlinear function, f, relating the response variable,
y, to the measure of size, x. Models such as these are
the default output from most statistical software.

Another four regression models were fitted by gen-
eralized nonlinear least squares. These analyses
assumed additive, normal, heteroscedastic error, with
variance that was modeled as a power of the fitted
(mean) value for the response variable:

var ,ε σ β θ
i i*( ) = ( )( )2 2f x

so that the models were of the general form:

y f x N f xi i i i i*= ( ) + ( )( )( )( ), , ,β ε ε σ β θ∼ 0 2 2 [5]

Theta, which is an additional parameter in the fitted
model (Pinheiro & Bates, 2000: 210; Ritz & Streibig,
2008: 74; Zuur et al., 2009: 78), determines the spread
in variance as size increases. Thus, variance is typi-
cally an increasing function of the predicted value for
y, in much the same manner that it is an increasing
function of prediction in models fitted by the tradi-
tional method [2].

Standardized residuals were calculated for the
homoscedastic regression models by dividing each
ordinary residual by the standard error of the esti-
mate (i.e. by the standard deviation for residuals),
whereas normalized residuals were computed for the
heteroscedastic regressions by dividing each ordinary
residual by the square root of the variance at the
corresponding level for ŷ (Zuur et al., 2009: 85). Plots
of these residuals against fitted values for the
response were then examined for evidence of persis-
tent (undesirable) pattern and potential outliers.
Approximately 99% of residuals typically fall between
−3 and +3, so more extreme values identified poten-
tial outliers. Tests for outliers and for normality
(normal probability plots) were performed when
needed (Packard, 2013).

All models were fitted with the nlrwr package in R,
version 2.13.2 (R Core Development Team) (for
simple script, see the Supporting information,
Table S1). Models fitted by regression and by tradi-
tional allometry were compared by graphical analysis
on the untransformed scale (Anscombe, 1973) and by
AIC (Burnham & Anderson, 2002). AICs for models
fitted directly to untransformed data were taken from
the output from R but those for models estimated

by traditional allometry had to be recalculated to
accommodate the change in scale attending back-
transformation of the response variable (Xiao et al.,
2011; Ballantyne, 2013; Lai et al., 2013). The lowest
AIC in a set of analyses identified the best fit in the
pool of candidate models [but see also Packard
(2013)]. The same standard that was used by Xiao
et al. (2011) was applied: if AIC for an alternative
model differed from that of the best fit by no more
than 2, the models were considered to be equivalent;
however, if AICs differed by more than 2, the second
model was judged to have insufficient support.

RESULTS
EXAMPLE 1 (DATASET #6)

The bivariate distribution for the 29 observations
comprising dataset #6 was linearized by transforming
both x and y (Fig. 1A); outliers were not apparent
(Fig. 1A, B); and the plot of residuals gave no
indication of heteroscedasticity in log y (Fig. 1B).
Linearization of the distribution was necessary, of
course, because curvilinearity in logarithmic domain
would violate a fundamental requirement of the tra-
ditional allometric method (Reeve, 1940; Kavanagh &
Richards, 1942; Richards & Kavanagh, 1945). Inas-
much as assumptions underlying the traditional
method appear to have been satisfied, the analysis
was continued.

AIC indicated that the model fitted by the tradi-
tional allometric method was far and away the best
model in the candidate pool (Table 1). None of the
other candidate models (including the standard two-
parameter power function with additive, normal,
homoscedastic error) received any support whatso-
ever relative to that of the model estimated by tradi-
tional allometry. Thus, the equivalent analysis of this
dataset by Xiao et al. (2011) presumably contributed
to their impression that the traditional method is
generally better than standard nonlinear regression
for fitting an allometric equation. The implication, of
course, is that the model fitted by the traditional
method also describes the dominant pattern in the
bivariate distribution of untransformed observations.

However, logarithmic transformation has the
potential to make ugly data look remarkably good
(Packard, 2011) and the current dataset provides a
case in point. When untransformed observations were
displayed on a bivariate plot, it was immediately
apparent that the distribution is problematic: 27 data
points are grouped in a narrow column at the low end
of the size distribution, two data points are in column
at the high end, and a substantial gap separates the
two groups (Fig. 1C). No unitary pattern is apparent
in the distribution. The power function estimated by
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back-transforming the equation fitted to logarithms
does not describe the arithmetic distribution and,
consequently, has no value for prediction or as the
basis for theoretical constructs (Fig. 1C). This conten-
tion is supported by the decidedly unbalanced distri-
bution for ordinary residuals from the traditional fit
(Fig. 1D). Thus, the low AIC for the model fitted by
traditional allometry was deceptive: it simply identi-
fied the best of a generally bad set of models for
describing the original bivariate distribution. The
apparent superiority of the traditional fit over the
two-parameter model estimated by standard nonlin-
ear regression is a finding of little importance when
neither of the models identifies a dominant pattern in
the observations.

EXAMPLE 2 (DATASET #386)

The distribution for logarithmic transformations of the
91 observations in dataset #386 satisfied the require-

ment for linearity (Fig. 2A) but failed to meet the
assumption of homoscedasticity (Fig. 2B). Although
confidence limits for parameters in the linear model
consequently are suspect, the mean function itself
probably is reliable (as demonstrated by balance in the
distribution of positive and negative residuals). Aside
from the question about heteroscedasticity, the loga-
rithmic distribution appeared to be suitable for tradi-
tional allometric analysis.

AIC indicated that the power function estimated
by the traditional method is substantially better than
the two-parameter power function with additive,
normal, homoscedastic error (Table 2). This finding is
consistent with the conclusion by Xiao et al. (2011)
that the traditional method generally is better than
standard nonlinear regression for fitting allometric
equations. However, a two-parameter model with
normal, heteroscedastic error actually has the lowest
AIC and apparently is the best model in the pool of
candidates (Table 2).

Figure 1. A, linear and quadratic models fitted to logarithmic transformations of bivariate data in dataset #6 (Xiao et al.,
2011). The quadratic is not significantly better than the linear model (F1,26 = 3.05, P = 0.09, by nested analysis of variance).
B, standardized residuals from the linear model fitted to logarithms are randomly distributed in relation to fitted values
and none is so extreme as to mark it as an outlier. C, observations expressed on the arithmetic scale lack a unitary
pattern. The mean function estimated by the traditional allometric method does not describe the distribution adequately
because it consists of two distinct groupings. D, a plot of ordinary residuals from the traditional allometric model versus
untransformed x reinforces the perception that the data were unsuited from the outset for use in an allometric analysis.
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When untransformed data were displayed graphi-
cally, it again became apparent that logarithmic
transformation had caused ugly data to look remark-
ably good. None of the statistical models in the pool
of candidates provides an adequate description for

pattern in the observations because no unitary
pattern exists (Fig. 2C). Three aberrant observations
stand out in the sample (Fig. 2C) and they also are
apparent in a graph of ordinary residuals from
the traditional model (Fig. 2D). As in the preceding

Table 1. Predictive equations and AICs for models fitted to dataset #6 from Xiao et al. (2011)

Predictive equation AIC ΔAIC

Back-transformed OLS with lognormal, heteroscedastic error:
ŷ = 0.0117x0.639

65.6 0

Linear model (no intercept) with normal, homoscedastic error:
ŷ = (1.261e – 04)x

159.5 93.9

Linear model (intercept) with normal, homoscedastic error:
ŷ = 1.960 + (7.831e – 05)x

152.6 87.0

Two-parameter power with normal, homoscedastic error:
ŷ = 0.405x0.261

144.2 78.6

Three-parameter power with normal, homoscedastic error:
Failed to converge

– –

Linear model (no intercept) with normal, heteroscedastic error:
ŷ = 0.0018x

109.8 44.2

Linear model (intercept) with normal, heteroscedastic error:
ŷ = 0.063 + 0.002x

113.0 47.4

Two-parameter power with normal, heteroscedastic error:
Ŷ = 0.008x0.780

106.3 40.7

Three-parameter power with normal, heteroscedastic error:
ŷ = −0.023 + 0.011x0.736

107.2 41.6

AIC, Akaike’s information criterion; OLS, ordinary least squares.

Table 2. Predictive equations and AICs for models fitted to dataset #386 from Xiao et al. (2011)

Predictive equation AIC ΔAIC

Back-transformed OLS with lognormal, heteroscedastic error:
ŷ = 2.727x0.061

119.9 5.8

Linear model (no intercept) with normal, homoscedastic error:
ŷ = (9.904e – 05)x

504.9 390.8

Linear model (intercept) with normal, homoscedastic error:
ŷ = 3.821 + (2.079e – 05)x

179.4 65.3

Two-parameter power with normal, homoscedastic error:
ŷ = 2.761x0.060

130.8 16.7

Three-parameter power with normal, homoscedastic error:
Failed to converge

– –

Linear model (no intercept) with normal, heteroscedastic error:
ŷ = (1.122e – 04)x

505.8 391.7

Linear model (intercept) with normal, heteroscedastic error:
ŷ = 3.625 + (2.870e – 04)x

176.3 62.2

Two-parameter power with normal, heteroscedastic error:
ŷ = 2.727x0.061

114.1 0

Three-parameter power with normal, heteroscedastic error:
ŷ = −9.014 + 11.942x0.013

125.5 11.4

AIC, Akaike’s information criterion; OLS, ordinary least squares.
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example, the original data are not well suited for use
in bivariate allometry. The low quality of the data
escaped detection by Xiao et al. (2011) because the
traditional model apparently was not validated in the
scale of measurement (Fig. 2C). The allometric expo-
nent is unreliable, and the mean function estimated
by traditional allometry has little value for prediction.
The procedure followed by Xiao et al. (2011) failed to
detect the flaw in the dataset and led to the trivial
and misleading conclusion that a traditional model is
better than a two-parameter model fitted by standard
nonlinear regression.

EXAMPLE 3 (DATASET #312)

Logarithmic transformation of the 27 observations
in dataset #312 failed to linearize the distribution
(Fig. 3A), but the cause for the failure appears to have
been a single, outlying observation at the low end of

the distribution (Fig. 3B). Inasmuch as the departure
from linearity in log domain violates a requisite con-
dition for application of the traditional allometric
method (Reeve, 1940; Kavanagh & Richards, 1942;
Richards & Kavanagh, 1945), this unusual observa-
tion probably should have been reconciled before
studying the full dataset (Osborne & Overbay, 2004).
Nevertheless, the distribution apparently was judged
by Xiao et al. (2011) to be approximately linear
because they appear to have used all 27 observations
in their analysis. Examination of the data therefore
continued.

AIC for the two-parameter power function fitted by
standard nonlinear regression was substantially lower
than AIC for the traditional model (Table 3). This
dataset apparently was one of the few studied by Xiao
et al. (2011) where nonlinear regression appeared to
perform better than the traditional allometric method.
However, such a conclusion is misleading because the

Figure 2. A, linear and quadratic models fitted to logarithmic transformations of bivariate data in dataset #386 (Xiao
et al., 2011). The quadratic is not significantly better than the linear model (F1,88 = 0.29, P = 0.59, by nested analysis of
variance). B, standardized residuals from the linear model fitted to transformations show a megaphone-shaped pattern
indicative of heteroscedasticity, but negative and positive residuals are balanced. C, three observations on the original
scale stand apart from the distribution for the other 88 observations in the sample. The data are unsuited for allometric
analysis and cannot be described by the model fitted by traditional allometry. D, a plot of ordinary residuals from the
traditional allometric model versus untransformed x reinforces the perception that the data were unsuited from the outset
for use in an allometric analysis.
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best model in the candidate pool actually is a straight
line with a nonzero intercept and additive, normal,
homoscedastic error (Table 3). The estimate for the
allometric exponent in the best model consequently
is 1. The mean function for the straight line captures
the dominant pattern in the observations (Fig. 3C)
and residuals are randomly distributed with respect
to fitted values (Fig. 3D). A normal probability plot
approximates a straight line with intercept of 0 and
slope of 1 (see Supporting information, Fig. S1), so
residuals conform to expectation for a normal distri-
bution (Ritz & Streibig, 2008). The distribution of
residuals is also noteworthy because no outlier is
evident (Fig. 3D). Thus, the appearance of an outlier in
the log-log distribution apparently was an artefact of
transformation (Fig. 3B).

Two other models are statistically equivalent to the
best model in the candidate pool (Table 3). The three-
parameter power function with additive, normal,
homoscedastic error approximates a straight line with
parameter estimates that are almost identical to
those for the best model. The straight line with addi-
tive, normal, heteroscedastic error also has regression
coefficients similar to those of the best fit, but the
coefficient θ in this second equivalent model (−0.24)
points to variance that may decline slightly with
increasing ŷ. In any event, all evidence points to a
rectilinear model (with intercept) as the best in the
candidate pool, and all three of the favoured models
have additive, normal error.

The mean function estimated by the traditional
allometric method does not follow the path of the

Figure 3. A, linear and quadratic models fitted to logarithmic transformations of bivariate data in dataset #312 (Xiao
et al., 2011). The quadratic is better than the linear model (F1,24 = 22.81, P < 0.001, by nested analysis of variance; adjusted
R2 = 0.83 and 0.91 for linear and quadratic models, respectively). The curvilinearity may be caused by an outlier at the
low end of the distribution. B, standardized residuals from the linear model fitted to transformations point to the presence
of an outlier at the low end of the distribution for fitted values. The Studentized deleted residual for this unusual
observation (5.05) supports the contention that it was not drawn from the same bivariate distribution as the other 26
observations (Kutner et al., 2004). C, linear model with additive, normal, homoscedastic error provides the best
description for pattern in the untransformed observations. The traditional allometric model overestimates observations
in the middle of the distribution and underestimates them at the extremes. D, standardized residuals for the linear model
fitted to untransformed data are randomly distributed with respect to fitted values for y.
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observations in arithmetic domain and, consequently,
is an unreliable basis for prediction and theoretical
constructs (Fig. 3C). The traditional model is inad-
equate because it lacks an intercept and because it
has an inappropriate form for error (i.e. lognormal
instead of normal). The two-parameter model fitted
by standard nonlinear regression also suffers from
underparameterization. These problems were not
detected with the protocol recommended by Xiao
et al. (2011).

EXAMPLE 4 (DATASET #471)

The bivariate distribution for the 112 observations
comprising dataset #471 deviated somewhat from
linearity in log space, largely as a result of the
influence of a small cluster of points at the high
end of the distribution (Fig. 4A). However, this
departure from linearity is not obvious in the plot
of standardized residuals (Fig. 4B) and fitting a
quadratic model resulted in only a marginal improve-
ment in fit (R2 = 0.94 and 0.95 for the linear and
quadratic models, respectively). The appearance of
curvilinearity may have been nothing more than a
statistical anomaly, so the premise that the distribu-
tion was effectively linearized by transformation was
accepted. The alternative at this point would have
been to invoke non-loglinearity, which is a concept of
questionable utility (Packard, 2012). The model for
the straight line therefore was back-transformed to

form a two-parameter power model in the arithmetic
scale (Table 4).

AIC for the traditional model was substantially
lower than that for the two-parameter model with
additive, normal, homoscedastic error (Table 4),
so this case presumably was another that led Xiao
et al. (2011) to their conclusion about the overall
superiority of the traditional allometric method. Nev-
ertheless, the best of the candidate models is the
three-parameter function with additive, normal,
heteroscedastic error (Table 4). The mean function
follows the path of the observations much better than
does the function estimated by back-transformation
(Fig. 4C) and normalized residuals for the three-
parameter power model are acceptable (Fig. 4D). A
normal probability plot approximates a straight line
with slope of 1 and intercept of 0 (see Supporting
information, Fig. S2), so the analysis satisfies the
assumption of normality in the distribution for
residuals (Ritz & Streibig, 2008). The best estimate
for the allometric exponent consequently is 0.80 and
not the 0.72 that is predicted by the traditional
method. The major cause for this difference in expo-
nents is the inclusion of an explicit intercept in the
regression model. Allometric equations commonly
need an intercept to capture the dominant pattern
in the bivariate distribution (Verwijst, 1991; Bales,
1996; Sartori & Ball, 2009; Packard, 2012).
Underparameterization was not detected by the pro-
cedure articulated by Xiao et al. (2011).

Table 3. Predictive equations and AICs for models fitted to dataset #312 from Xiao et al. (2011)

Predictive equation AIC ΔAIC

Back-transformed OLS with lognormal, heteroscedastic error:
ŷ = 3.258x0.323

–28.9 20.0

Linear model (no intercept) with normal, homoscedastic error:
ŷ = 12.918x

26.5 75.4

Linear model (intercept) with normal, homoscedastic error:
ŷ = 0.897 + 6.047x

–48.9 0

Two-parameter power with normal, homoscedastic error:
ŷ = 3.611x0.368

–38.3 10.6

Three-parameter power with normal, homoscedastic error:
ŷ = 0.896 + 6.041x0.999

–46.9 2.0

Linear model (no intercept) with normal, heteroscedastic error:
ŷ = 12.015x

18.0 66.9

Linear model (intercept) with normal, heteroscedastic error:
ŷ = 0.898 + 6.039x

–47.0 1.9

Two-parameter power with normal, heteroscedastic error:
ŷ = 3.967x0.413

–43.2 5.7

Three-parameter power with normal, heteroscedastic error:
ŷ = 0.875 + 5.740x0.960

–45.0 3.9

AIC, Akaike’s information criterion; OLS, ordinary least squares.
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DISCUSSION

The recent controversy over how to fit a two-
parameter power function to bivariate data has raised
new concerns about the reliability of prior research
that was based on statistical models fitted by the
traditional allometric method. Xiao et al. (2011) set
out to resolve the debate by re-examining 471
datasets taken from the literature. A model fitted by
the traditional method was judged by Xiao et al.
(2011) to be better than one fitted by standard non-
linear regression for describing 69% of the datasets,
and the two approaches were said to be equally good
in another 15% of the cases. Thus, the traditional fit
was supported in a large majority of the comparisons.
However, the few cases in which standard nonlinear
regression appeared to yield the better model (17%)
led Xiao et al. (2011) also to recommend that investi-
gators consider the probable form for error before
settling on a modelling procedure. If empirical analy-

sis (i.e. AIC) or theoretical considerations point to
‘lognormal’ error for the model, the traditional
allometric method was recommended. Otherwise,
standard nonlinear regression was said to be the
procedure of choice.

This advice from Xiao et al. (2011) is of questionable
value because important steps were omitted from
their analyses and because their protocol was focused
too narrowly on a pair of two-parameter models (also
Mascaro et al., 2011, 2014; Ballantyne, 2013; Lai
et al., 2013). For example, Xiao et al. (2011) did not
perform exploratory analyses on untransformed data
in bivariate display (see Packard, 2013), else they
most certainly would have detected at the outset
flawed datasets such as those in Examples 1 and 2
(Figs 1C, 2C). Moreover, by limiting their pool of
candidate models to a pair of two-parameter power
functions with different forms for error, Xiao et al.
(2011) sometimes fitted underparameterized func-
tions that failed to capture the dominant pattern in

Figure 4. A, linear and quadratic models fitted to logarithmic transformations of bivariate data in dataset #471 (Xiao
et al., 2011). The quadratic is better than the linear model (F1,109 = 18.80, P < 0.001, by nested analysis of variance). B,
standardized residuals from the linear model fitted to transformations are not obviously flawed. C, a three-parameter
power model with additive, normal, heteroscedastic error provides the best description for the pattern in untransformed
observations. The traditional allometric model underestimates y in the middle and upper parts of the distribution. D,
normalized residuals for the three-parameter power model point to a possible outlier at the low end of the distribution
for fitted values but the remainder of the distribution is satisfactory.
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untransformed data (Figs 3C, 4C). Finally, Xiao et al.
(2011) apparently did not routinely validate fitted
models graphically on the arithmetic scale. This was
a critically important oversight. The primary objec-
tive in fitting any allometric model is to estimate a
mean function that captures the dominant pattern in
the untransformed data, yet success in achieving this
goal can be judged only by examining a graphical
display of the mean function against the background
of untransformed observations (Anscombe, 1973;
Kutner, Nachtsheim & Neter, 2004; Cook & Weisberg,
2009). Examining AIC is not sufficient to identify a
good statistical model because all the models in the
candidate pool may be bad (Burnham & Anderson,
2002: 62). Reliance on AIC is especially inappropriate
when one model is fitted directly to untransformed
observations and the other is fitted indirectly by back-
transforming from the logarithmic scale (Packard,
2013).

The narrow focus for the investigation also led Xiao
et al. (2011) to conclude prematurely that lognormal
error is more common in nature than normal error
(see also Mascaro et al., 2011, 2014; Ballantyne, 2013;
Lai et al., 2013). Both the datasets that were amena-
ble to statistical analysis in the current investigation
were described best by models with normal error (see
Supporting information, Figs S1, S2), despite the
fact that one of those datasets (#471) presumably
was characterized by Xiao et al. (2011) as having
a lognormal distribution for residuals (Table 4).
The characterization of dataset #471 as having log-

normal error most likely was caused by confounding
heteroscedasticity with lognormality: the data were
heteroscedastic but not lognormal. Such confounding
of heteroscedasticity with lognormality is not uncom-
mon (Packard, 2013, 2014b).

The present study examined 82 datasets chosen
haphazardly from the 471 compiled by Xiao et al.
(2011), but the results are difficult to summarize
because of the relatively large number of models in
the candidate pool and because more than one model
was an acceptable fit to some datasets (Table 3). Some
datasets are described quite well by a two-parameter
power function fitted by the traditional allometric
method (multiplicative, lognormal, heteroscedastic
error); others are well characterized by a two-
parameter power function fitted by standard nonlin-
ear regression (additive, normal, homoscedastic
error); and many are not described adequately by
either of these procedures (e.g. as in the four case
studies in the current investigation). The point here is
that recommendations tendered by Xiao et al. (2011)
do not provide workers with a reliable guide for
performing research on allometric variation. A more
holistic approach to allometric analysis is needed in
future investigations to avoid problems such as those
described in the present study. Investigators should
identify larger pools of candidate models, with differ-
ent functional form and different structure for error.
The traditional allometric method should be included
in the mix because the resultant model might be
quite appropriate when data are heteroscedastic and

Table 4. Predictive equations and AICs for models fitted to dataset #471 from Xiao et al. (2011)

Predictive equation AIC ΔAIC

Back-transformed OLS with lognormal, heteroscedastic error:
ŷ = 4.775x0.719

1412.3 12.8

Linear model (no intercept) with normal, homoscedastic error:
ŷ = 0.361x

2153.7 754.2

Linear model (intercept) with normal, homoscedastic error:
ŷ = 143.7 + 0.359x

2155.6 756.1

Two-parameter power with normal, homoscedastic error:
ŷ = 0.858x0.924

2155.0 755.5

Three-parameter power with normal, homoscedastic error:
ŷ = 10.278 + 0.848x0.925

2157.0 757.5

Linear model (no intercept) with normal, heteroscedastic error:
ŷ = 0.420x

1526.2 126.7

Linear model (intercept) with normal, heteroscedastic error:
ŷ = 46.767 + 0.477x

1425.4 25.9

Two-parameter power with normal, heteroscedastic error:
ŷ = 5.736x0.701

1414.4 14.9

Three-parameter power with normal, heteroscedastic error:
ŷ = 21.116 + 2.487x0.804

1399.5 0

AIC, Akaike’s information criterion; OLS, ordinary least squares.
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residuals are demonstrably lognormal. However, the
resulting mean function then will predict geometric
means for the response instead of arithmetic means
(Smith, 1993; Hayes & Shonkwiler, 2006). Regardless
of the method that is used to fit the model, it should
be validated graphically in the scale of measurement.
Neither AIC nor any other procedure for identifying
the ‘best’ model can substitute for graphical display.
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SUPPORTING INFORMATION

Additional Supporting Information may be found in the online version of this article at the publisher’s web-site:

Figure S1. Normal probability plot from the fit of a straight line with additive, normal, homoscedastic error
to observations in dataset #312 from Xiao et al. (2011). The solid line has a slope of 1 and an intercept of 0. The
scatter of points around the line points to a normal distribution for residuals.
Figure S2. Normal probability plot from the fit of a three-parameter power function with additive, normal,
heteroscedastic error to observations in dataset #471 from Xiao et al. (2011). The solid line has a slope of 1 and
an intercept of 0. The scatter of points around the line points to a normal distribution for residuals.
Table S1. Computer code.
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