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Design of experiments and analysis of data from designed experiments are well-established 
methodologies in which statisticians are formally trained. Another critical and rarely taught 
skill is the planning that precedes designing an experiment. This article suggests a set of tools 
for presenting generic technical issues and experimental features found in industrial experi- 
ments. These tools are predesign experiment guide sheets to systematize the planning process 
and to produce organized written documentation. They also help experimenters discuss com- 
plex trade-offs between practical limitations and statistical preferences in the experiment. A 
case study involving the (computer numerical control) CNC-machining of jet engine impellers 
is included. 
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1. INTRODUCTION 

1.1 A Consulting Scenario 

Consider the following scenario: An experimenter 
from the process engineering group comes to you 
and says: “We are manufacturing impellers that are 
used in a jet turbine engine. To achieve the claimed 
performance objectives, we must produce parts with 
blade profiles that closely match the engineering de- 
sign requirements. I want to study the effect of dif- 
ferent tool vendors and machine set-up parameters 
on the dimensional variability of the parts produced 
on the machines in our CNC-machine center.” 

Many experimental design applications in industry 
begin with such a statement. It is well recognized 
that the planning activities that precede the actual 
experiment are critical to successful solution of the 
experimenters’ problem (e.g., see Box, Hunter, and 
Hunter 1978; Hahn 1977, 1984; Montgomery 1991; 
Natrella 1979). Montgomery (1991) presented a seven- 
step approach for planning experiments, summarized 
in Table 1. The first three of these steps constitutes 
the preexperiment planning phase. The detailed, 
specific activities in this phase are the focus of this 
article. The emphasis is planning for a screening ex- 

periment, or a step in sequential experimentation on 
an existing product/process, off-line or on-line. Many 
of the issues addressed, however, also apply to new 
products/processes or research and development 
(R&D) and to various additional experimental goals, 
such as optimization and robustness studies. 

1.2 A Gap 

It is often said that no experiment goes exactly as 
planned, and this is true of most industrial experi- 
ments. Why? One reason is that statisticians who 
design experiments with scientists and engineers (the 
“experimenters”) usually have to bridge a gap in 
knowledge and experience. The consequences of not 
bridging this gap can be serious. 

The statistician’s lack of domain knowledge can 
lead to: 

1. Unwarranted assumptions of process stability 
during experimentation 

2. Undesirable combinations of control-variable 
levels in the design 

3. Violation or lack of exploitation of known phys- 
ical laws 

4. Unreasonably large or small designs 
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Table 1. Steps of Experimentation 

1. Recognition of and statement of the problem 
2.” Choice of factors and levels 
3.* Selection of the response variable(s) 
4. Choice of experimental design 
5. Conduction of the experiment 
6. Data analysis 
7. Conclusions and recommendations 

*In some situations, steps 2 and 3 can be reversed. 

5. Inappropriate confounding 
6. Inadequate measurement precision of re- 

sponses or factors 
7. Unacceptable prediction error 
8. Undesirable run order 

The experimenter’s lack of statistical knowledge can 
lead to: 

1. Inappropriate control-variable settings (e.g., 
range too small to observe an effect or range so large 
that irrelevant mechanisms drive the response vari- 
able) 

2. Misunderstanding of the nature of interaction 
effects, resulting in unwisely confounded designs 

3. Experimental design or results corrupted by 
measurement error or setting error 

4. Inadequate identification of factors to be “held 
constant” or treated as nuisance factors. causing dis- 
torted results 

5. Misinterpretation of past experiment results, 
affecting selection of response variables or control 
variables and their ranges 

6. Lack of appreciation of different levels of ex- 
perimental error, leading to incorrect tests of signif- 
icance 

This article attempts to help bridge the gap by 
providing a systematic framework for predesign in- 
formation gathering and planning. Specifically, we 
present @de sheets to direct this effort. The use of 
the guide sheets is illustrated through the (computer 
numerical control) CNC-machinery example briefly 
presented previously. This article is a consolidation 
and extension of the discussion by Hahn (1984), BOX 
et al. (197X), Montgomery (1991), Natrella (1979), 
Bishop. Petersen, and Traysen (1982), and Hoadley 
and Kettenring (1990). 

The guide sheets are designed to be discussed and 
filled out by a multidisciplinary experimentufion team 
consisting of engineers, scientists, technicians/oper- 
ators, managers, and process experts. These sheets 
are particularly appropriate for complex experiments 
and for people with limited experience in designing 
experiments. 

The sheets are intended to encourage the discus- 
sion and resolution of generic technical issues needed 
before the experimental design is developed. Hahn 
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(1984) listed most of these issues and made the rec- 
ommendation, “The major mode of communication 
between the experimenter and the statistician should 
be face-to-face discussion. The experimenter should, 
however, also be encouraged to document as much 
of the above information as possible ahead of time” 
(p, 25). Unfortunately, as Hahn observed, “Not all 
experimenters are willing to prepare initial docu- 
mentation” (p. 26). Moreover, not all of the relevant 
issues may be thoroughly thought out-hence, the 
need for face-to-face discussions, during which, as 
Hahn advised, “The statistician’s major functions are 
to help structure the problem, to identify important 
issues and practical constraints, and to indicate the 
effect of various compromises on the inferences that 
can be validly drawn for the experimental data” 
(P. 21). 

The guide sheets proposed in this article outline a 
systematic “script” for the verbal interaction among 
the people on the experimentation team. When the 
guide sheets are completed, the team should be well 
equipped to proceed with the task of designing the 
experiment, taking into account the needs and con- 
straints thus identified. 

2. PREDESIGN MASTER GUIDE SHEET AND 
SUPPLEMENTARY SHEETS 

The guide sheets consist of a “Master Guide Sheet,” 
plus supplementary sheets and two tutorials. These 
are schematically illustrated in Figure 1. The sup- 
plementary sheets are often more convenient for items 
3-7. 

The Master Guide Sheet is shown in Figure 2. It 
is stripped of the blank space usually provided to fill 
in the information. Blank copies will be provided by 
the authors on request. 

Discussion of issues related to different pieces of 
the Master Guide Sheet and the supplementary sheets 
follows. 

Writing the objective (item 2, Fig. 2) is harder than 
it appears to most experimenters. Objectives should 
be (a) unbiased, (b) specific, (c) measurable, and (d) 
of practical consequence. To be unbiased. the ex- 
perimentation team must encourage participation by 
knowledgeable and interested people with diverse 
perspectives. The data will be allowed to speak for 
themselves. To be specific and measurable, the ob- 
jectives should be detailed and stated so that it is 
clear whether they have been met. To be of practical 
consequence, there should be something that will be 
done differently as a result of the outcome of the 
experiment. This might be a change in R&D direc- 
tion, a change in process, or a new experiment. Con- 
ducting an experiment constitutes an expenditure of 
resources for some purpose. 

Thus experimental objectives should not be stated 



PLANNING FOR A DESIGNED INDUSTRIAL EXPERIMENT 3 

Pre-design Master Guide Sheet 
1. Name, Organization, Title 

2. Objectives 

3. Relevant Background 

4. Response variables 
5. Control variables 

6. Factors to be “held constant” 

7. Nuisance factors 
8. Interactions 

9. Restrictions 

10. Design preferences 

11. Analysis 81 presentation techniques 

12. Responsibility for coordination 

13. Trial run? 

Variables 
“Held Cons- 
tant” Factors 

I 
lnteractlons (Tutorlal) 

Taylor ser,es approxlmamn 
f(x,y)=ao+a,x+b,y+c,,xy+anx~+b~y2+... 

PI01 18 Plot lb 

I IntercAms I 

Figure 1. Structure of Predesign Experiment Guide Sheets. 

as, “To show that catalyst 214 works better than 
catalyst d12, if the technician adjusts the electrode 
voltage just right.” A better objective would be: “To 
quantify the efficiency difference, A, between cata- 
lysts 214 and d12 for electrode voltages 7, 8, and 9 
in the ABC conversion process-and assess statis- 
tical significance (compare to 95%) and practical sig- 
nificance (A > 3%), perhaps economically justifying 
one catalyst over the other.” 

As Box et al. (1978, p. 15) put it (paraphrased), 
the statistician or other members of the experimen- 
tation team should “ensure that all interested parties 
agree on the objectives, agree on what criteria will 
determine that the objectives have been reached, and 
arrange that, if the objectives change, all interested 
parties will be made aware of that fact and will agree 
on the new objectives and criteria.” Even experi- 
menters in the physical sciences-who have been 
trained in the scientific method-sometimes need 
prodding in this. 

The objective of the experiment can be met if the 
predesign planning is thorough, an appropriate de- 
sign is selected, the experiment is successfully con- 
ducted, the data are analyzed correctly, and the re- 
sults are effectively reported. By using a systematic 
approach to predesign planning, there is greater like- 
lihood that the first three conditions will occur. This 
increases the likelihood of the fourth. Then the ex- 
periment is likely to produce its primary product- 
new knowledge. 

2.1 Relevant Background 

The relevant background supporting the objec- 
tives should include information from previous ex- 
periments, routinely collected observational data, 
physical laws, and expert opinion. The purposes of 
providing such information are (a) to establish a con- 
text for the experiment to clearly understand what 
new knowledge can be gained; (b) to motivate dis- 
cussion about the relevant domain knowledge, since 
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e unbiased, specific, measurable, and 

9. List restrictions on the experiment, e.g., ease of changing control variables, 
methods of data acquisition, materials, duration, number of runs, type of experimental 
unit (need for a split-plot design), “illegal” or irrelevant experimental regions, limits to 
randomization, run order, cost of changing a control variable setting, etc.: 

10. Give current design preferences, if any, and reasons for preference, including 
blocking and randomization: 

11. If possible, propose analysis and presentation techniques, e.g., plots, 
ANOVA, regression, plots, t tests, etc.: 

12. Who will be responsible for the coordination of the experiment? 

13. Should trial runs be conducted? Why I why not? 

Figure 2. Predesign Master Guide Sheet. This guide can be used to help plan and design an experiment. It serves as a 
checklist to accelerate experimentation and ensures that results are not corrupted for lack of careful planning. Note that it may 
not be possible to answer all questions completely. If convenient, use the supplementary sheets for 4-8. 

such discussion may change the consensus of the group, 
hence the experiment; and (c) to uncover possible 
experimental regions of particular interest and others 
that should be avoided. With this background, we 
reduce the risks of naive empiricism and duplication 
of effort. 

For the CNC-matching problem introduced ear- 
lier, we have the guide sheet shown in Figure 3. 

3. RESPONSE VARIABLES 

As mentioned previously, items 4-8 on the guide 
sheet are most conveniently handled using the sup- 
plementary sheets. The first one is for response vari- 
ables, as shown in Table 2. 

Response variables come to mind easily for most 
experimenters, at least superficially; they know what 
outcomes they want to change-a strength, a failure 
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rate, a concentration, or a yield. What makes a good 
response variable? The answer to this question is 
complex. A complete answer is beyond the scope of 
this article, but some guidelines can be given. A re- 
sponse variable 

1. Is preferably a continuous variable. Typically, 
this will be a variable that reflects the continuum of 
a physical property, such as weight, temperature, 
voltage, length, or concentration. Binary and ordinal 
variables have much less information content-much 
as the raw values are more informative than histo- 
grams that have wide bins. Note that being contin- 
uous with respect to a control variable may be im- 
portant. If a response variable has, perhaps, a steep 
sigmoidal response to a control variable, it is effec- 
tively binary as that variable changes. For example, 
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l.Experlmenter’s Name and Organlratlon: John Smith, Process Eng. Group 
Brief Title of Experiment: CNC Machining Study 

2. Objectives of the experiment (should be unbiased, specific, measurable, and 
of practical consequence): 
For machined titanium forgings, quantify the effects of tool vendor; shifts in a-axis, x- 
axis, y-axis, and z-axis; spindle speed; fixture height; feed rate; and spindle position on 
the average and variability in blade profile for class X impellers, such as shown in 
Figure 4. 
3. Relevant background on response and control variables: (a) theoretical 
relationships; (b) expert knowledge/experience; (c) previous experiments. Where 
does this experiment fit into the study of the process or system?: 
(a) Because of tool geometry, x-axis shifts would be expected to produce thinner 

blades, an undesirable characteristic of the airfoil. 
(b) This family of parts has been produced for over 10 years; historical experience 

indicates that externally reground tools do not perform as well as those from the 
“internal” vendor (our own regrind operation). 

(c) Smith (1987) observed in an internal process engineering study that current 
spindle speeds and feed rates work well in producing parts that are at the 
nominal profile required by the engineering drawings - but no study was done of 
the sensitivity to variations in set-up parameters. 

Results of this experiment will be used to determine machine set-up parameters for 
impeller machining. A robust process is desirable; that is, on-target and low variability 

performance regardless of which tool vendor is used. 

Figure 3. Beginning of Guide Sheet for CNC-Machining Study. 

weight of precipitate as a function of catalyst may be 
near zero for the selected low levels of catalyst and 
near maximum for the high levels. 

2. Should capture, as much as possible, a quantity 
or quality of interest for the experimental unit. For 
example, if the experimental unit is an ingot and a 
response is T = temperature, it may matter whether 
T is taken at a single point or averaged over a surface 
region, the entire surface area, or the entire ingot 
volume. 

be absolute, such as pounds, degrees centigrade, or 
meters. They may be relative units, such as percent 
of concentration by weight or by volume or propor- 
tional deviation from a standard. What is “appro- 
priate” may be determined by an empirical or first- 
principles model, such as using absolute units in E 
= mc2, or it may be determined by practical limi- 
tations, such as using percent of concentration by 
weight because the experimental samples are not all 
the same weight. 

3. Should be in appropriate units. The units may 4. Should be associated with a target or desirable 

Table 2. Response Variables 

Response variable 
(units) 

Normal operating 
level and range 

Measurement Relationship of 
precision, accuracy- response variable to 

how known? objective 

Blade profile 
(inches) 

Nominal (target) 
+ 1 x 10-3inches to - 
+ 2 x 10m3 inches at - 
all points 

Surface finish 

Surface defect 
count 

Smooth to rough 
(requiring hand 
finish) 

Typically 0 to 10 

u.E = 1 x 1O-5 inches 
from a coordinate 
measurement 
machine capability 
study 

Visual criterion 
(compare to 
standards) 

Visual criterion 
(compare to 
standards) 

Estimate mean 
absolute difference 
from target and 
standard deviation 
of difference 

Should be as smooth 
as possible 

Must not be 
excessive in 
number or 
magnitude 
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condition (which motivates the experiment). Such a 
comparison might be used to derive “performance 
measures” from response-variable outcomes. For ex- 
ample, with CNC-machining, blade profile is a re- 
sponse variable, and it is compared to the target 
profile by computing differences at certain locations. 
Mean absolute difference and the standard deviation 
of the differences are performance measures for the 
various experimental conditions. They can be ana- 
lyzed separately or by using the standard deviations 
to compute weights for the mean analysis. 

5. Is preferably obtained by nondestructive and 
nondamaging methods so that repeated measures can 
be made and measurement error can be quantified. 

6. Should not be near a natural boundary. Other- 
wise, the variable will not discriminate well. For ex- 
ample, it is hard to distinguish a yield of 99.5% from 
99.8%, and it is hard to detect and distinguish con- 
tamination levels near 0. 

7. Preferably has constant variance over the range 
of experimentation. 

There are other important characteristics of re- 
sponse variables that the experimenters may not have 
considered or communicated to the whole experi- 
mentation team. This sheet helps to draw them out: 
(a) current use, if any (col. 2); (b) ability to measure 
(col. 3); and (c) the knowledge sought through ex- 
perimentation (col. 4). 

It is helpful to know the current state of use, and 
if it is unknown, the experimenters are advised to 
include some trial runs prior to the experiment or 
“checkpoint” runs during the experiment (perhaps 
these data have not been previously acquired). The 
current distribution serves as one of several possible 
reference distributions for judging the pracrical mag- 
nitude of the effects observed. Given a typical stan- 
dard deviation for a response variable of u, a low- 
to-high control-variable effect of u/2 may be of no 
practical significance, but one of 4a may be impor- 
tant. Another advantage to knowing the current state 
of use is a check on credibility. Process or design 
limitations may constrain a response variable to be 
bounded on one or two sides. An experimental result 
outside that range may be erroneous or due to an 
abnormal mechanism (which may, however, be of 
interest). 

Measurement precision (and, in some cases, bias) 
and how to obtain it (i.e., choice of measurement 
system or repeated measurements) is a thorn in the 
flesh for many experimenters. The admonition of 
Eisenhart (1962) serves as a relevant (if overstated) 
warning, “until a measurement operation . . has 
attained a state of statistical control it cannot be re- 
garded in any logical sense as measuring anything at 
all” (p. 162). It has been our experience that many 
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experimenters do not know the state of control nor 
the precision and bias of most measurement systems 
measuring a response or a control variable. The mea- 
surement systems were not useless, they were just of 
unknown utility. Important and poorly understood 
systems should be evaluated with a measurement ca- 
pability study, a designed experiment of the measure- 
ment process. As a compromise, one might be forced 
to resort to historical data and experience or weaken 
the experimental objective to obtain ranking, selec- 
tion, or a binary response instead of quantification. 

The relationship of a response variable to the ob- 
jective may be direct. An objective may be defined 
in terms of a response variable-for example, “to 
quantify the effect that thermal cycle B has on tensile 
strength measured on customer qualifying tester X.” 
In the case of CNC-machining, a response variable 
is blade profile (see Fig. 4). This is related to the 
objective through two measurement-performance in- 
dicators-mean absolute difference of blade profile 
and the target, and standard deviation of the differ- 
ence. Sometimes a response variable may be a SUT- 
rogate for the true response of interest. This is often 
the case in destructive testing, in which a standard 
stress-to-fracture test, for example, represents per- 
formance under conditions of use. Another example 
is yield rate or failure rate, which are inferior re- 
sponses that often represent where a specification 
falls relative to a distribution of continuous-scale val- 
ues (the collection of which provides superior infor- 
mation). 

As discussed previously, the relationship of a re- 
sponse variable to the objective may be through per- 
formance measures that involve a comparison of the 
response to a target or desirable outcome. 

4. CONTROL VARIABLES 

As with response variables, most investigators can 
easily generate a list of candidate control variables. 

Control variables can be attribute or continuous. 
They can be narrowly defined, such as “percent of 
copper, by weight,” or broadly defined, such as 
“comparably equipped pc: Apple or IBM.” In either 
case, control variables should be explicitly defined. 

When discussing potential control variables with 
experimenters, it may be helpful to anticipate that 
held-constant factors and nuisance factors must also 
be identified. Figure 5 is a Venn diagram that can 
be used to help select and prioritize candidate fac- 
tors. It illustrates different categories of factors that 
affect response variables, based on three key char- 
acteristics-magnitude of influence on response 
variables, degree of controllability, and measurabil- 
ity (e.g., precision and accuracy). Each type of factor 
is discussed in detail in following sections. A descrip- 
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Figure 4. Jet Engine impeller (side view; z axis is vertical, x axis is horizontal, and y axis is into the page): 1. Height of Wheel; 
2. Diameter of Wheel; 3. Inducer Blade Height; 4. Exducer Blade Height; 5. Z Height of Blade. 

tion of the diagram is as follows: 4.1 Current Use (col. 2) 

1. Control variables are measurable, controllable, 
and thought to be (very) influential. 

2. Held-constant factors are controlled. 
3. Nuisance factors are uncontrolled factors (either 

they cannot be controlled, or they are allowed to 
vary). 

In discussing different variables and factors the 
team may choose to reassign variables from one group 
to another, and this is part of the ordinary process 
for planning a designed experiment. For the CNC- 
machining problem, the control-variable information 
was developed as shown in Table 3; those below the 
space are considered to be of secondary importance. 

Similar to the response variables sheet, the control 
variables sheet solicits information about (a) current 
use (col. 2), (b) ability to measure and set (col. 3), 
and (c) knowledge sought through experimentation 
(cols. 4-5). 

There are two reasons it helps to know the allowed 
ranges and nominal values of control variables under 
current use. First, the degree to which historical pro- 
cess data can be used to gain relevant knowledge 
may be revealed. This is discussed in Section 4.2. 
Second, the experimenter should select a range large 
enough to produce an observable effect and to span 
a good proportion of the operating range, yet not 
choose so great a range that no empirical model can 
be postulated for the region, as discussed in Section 
4.3. In some, less mature experimental situations, 
there may be no well-defined “current use,” in which 
case trial runs before or during experimentation are 
helpful-as they are with response variables. 

4.2 Ability to Measure and Set (col. 3) 

With control variables, there is an additional con- 
sideration rarely mentioned in the literature. The 
experimentation team not only needs to know how 
measurements will be obtained and the precision of 
measurement, a,,,, but also how the control variable 
settings will be obtained and “setting error,” E,. These 
different types of deviation from the ideal have dif- 
ferent effects on experimentation. Large 0, will mean 
that either errors-in-variables methods will have to 
be used (e.g., methods that will allow estimation of 
bias in effects estimates) or, alternatively, many sam- 
ples will have to be collected for measurement during 
experimentation to get an acceptably small a,,,lfi, 
especially if IE,J is also large. If IE,~ is large, traditional, 
class-variable-based analysis of variance will have to 

“held constant” factors 

nuisance -~ 
factors 

1 measurable 1 

Figure 5. Different Categories of Factors Affecting Re- 
sponse Variables. 
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Table 3. Control Variables 

Control variable Normal level 
(units) and range 

Measurement 
precision and Proposed settings, Predicted effects 
setting error- based on (for various 
how known? predicted effects responses) 

x-axis shift* 
(inches) 

y-axis shift* 
(inches) 

z-axis shift* 
(inches) 

Tool vendor 

a-axis shift* 
(degrees) 

Spindle speed 
(% of 
nominal) 

Fixture height 

Feed rate (% of 
nominal) 

O--.020 inches 

O-.020 inches 

O--.020 inches 

Internal, external 

O--.030 degrees 

85-115% 

O-.025 inches 

go-110% 

.OOl inches 
(experience) 

.OOl inches 
(experience) 

.OOl inches 
(experience) 

- 

.OOl degrees 
(guess) 

-1% 
(indicator 
on control 
panel) 

,002 inches 
(guess1 

-1% 
(indicator 
on control 
panel) 

0, .015 inches Difference /1 

0, .015 inches Difference 7 

? Difference 7 

Internal, external 

0, .030 degrees 

90%. 110% 

External is more 
variable 

Unknown 

None? 

0, .015 inches 

90%, 110% 

Unknown 

None? 

*The x, y, and z axes are used to refer to the part and the CNC machine. The a axis refers only to the machine. 

be replaced by regression analysis. The result of large 
setting variation may be unwanted aliasing, greater 
prediction error, violation of experiment constraints, 
and difficulty conducting split-plot analyses. 

Often, one finds that a, = [es/, such as when the 
measurement system is part of a controller, and equi- 
librium conditions can be achieved. Measurement 
precision and setting error are not always compa- 
rable, however. For example, a, < 1~~1 is not unusual 
for a continuous-batch mixing process. Suppose that 
the concentration of constituent A is at 10% and is 
continuously reduced towards a target of 5%. Batches 
might be produced with concentrations of lO%, 7%) 
and 4%. In this case, perhaps 1~~1 = l%, but a spec- 
trograph may measure with a,,, = .l%. Another ex- 
ample is a thermostat, which often provides u,,, < l&sl, 
especially if it has a “dead zone” in its logic. 

Alternatively, one may find a, > 1~~1. For exam- 
ple, physical laws may make it possible to accurately 
set gas pressure in a sealed cavity by setting gas tem- 
perature, but there may be no precise way to directly 
measure pressure. 

4.3 Knowledge Sought Through 
Experimentation 

In the design of experiments classes he teaches at 
Alcoa, J. S. Hunter gives a rule of thumb for ex- 
periments on existing processes. For each control 
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variable, low/high settings should be selected to cause 
a predicted effect (main effect) for the “key” re- 
sponse variable equal to one standard deviation of 
its variation in ordinary use, C~ (if there is “ordinary 
use”). This is a large enough change in response to 
have practical consequence and also large enough to 
likely be detected if measurement error is negligible 
and the experiment has enough runs. If the rule of 
thumb is followed, every control variable has “equal 
opportunity” to affect the response variable. 

Naturally, it is harder to suggest such a rule for 
immature processes. Moreover, other issues and con- 
straints must be taken into account when settings are 
selected-safety, discreteness of settings, process 
constraints, ease of changing a setting, and so forth. 
These are solicited in item 8 of the guide sheet. 

Predicted effects for the response variables may 
be available from the knowledge sources previously 
listed-theory, experts, and experiments. Quanti- 
tative predicted effects are preferable, but experi- 
menters may not be able to provide more than qual- 
itative indications. Even if uncertain, the exercise of 
attempting to predict the outcome of the experiment 
before it is run can foster good interaction within the 
experimentation team and often leads to revised 
choices of settings. An additional advantage is that 
the predictions will always be wrong, so it is easier 
to see what knowledge has been gained through ex- 
perimentation. 
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5. HELD-CONSTANT FACTORS 

Held-constant factors are controllable factors whose 
effects are not of interest in this experiment. Most 
experimenters think in these terms: “For this exper- 
iment, I want to study the effect of factors A, B, and 
C on responses y, and y,, but all other control vari- 
ables should be held at their nominal settings, and I 
do not want extraneous factors distorting the re- 
sults.” This sheet was developed to ensure the “all 
other control variables held at their nominal settings” 
condition. (The next sheet is used to help ensure that 
“there are no extraneous factors distorting the re- 
sults.“) For the CNC-machining example, the held- 
constant factors are as shown in Table 4. 

The sheet in Table 4 can force helpful discussion 
about which factors are adequately controlled and 
which factors are not. In so doing, it is often nec- 
essary to consult experts to help prioritize factors, 
recommend preexperiment studies to assess control, 
or develop control strategy. 

For example, in the CNC-machining case, this sheet 
resulted in the recognition of the fact that the ma- 
chine had to be fully warmed up before cutting any 
blade forgings. The actual procedure used was to 
mount the forged blanks on the machine spindles 
and run a 30-minute cycle without the cutting tool 
engaged. This would allow all machine parts and the 
lubricant to reach normal, steady-state operating 
temperature. The use of a “typical” (i.e., “mid-level”) 
operator and the blocking of the blank forgings by 
lot number were decisions made for experimental 
insurance, although neither variable was expected to 
have important effects. Not that it is not practical or 
desirable to hold some factors constant. For exam- 
ple, although it might be ideal to have experimental 
material from only one titanium forging, there may 
not be enough material within one forging, and forg- 

ing may interact with experimental variables. The 
operator’s role in this highly automated process is 
small, and material properties of the blank titanium 
forgings are carefully controlled because of the crit- 
icality of the part. 

6. NUISANCE FACTORS 

Processes vary over time. Experimental conditions 
vary over time. “Identical samples” differ. Some 
variations are innocuous, some are pernicious. Ex- 
amples include contamination of process fluids over 
time, equipment wear, build-up of oxides on tools, 
and so forth. Some of these can be measured and 
monitored to at least ensure that they are within 
limits; others must be assessed subjectively by ex- 
perts; still others are unmeasured. Nuisance factors 
are not controlled, and are not of primary interest 
in this experiment. They differ from held-constant 
factors in that they cannot be deliberately set to a 
constant level for all experimental units. If the level 
can be selected for any experimental unit, however, 
blocking or randomization might be appropriate. If 
levels cannot be selected (i.e., the levels of the factor 
are unpredictable, perhaps continuous), then the 
nuisance factor becomes a covariate in the analysis. 
If a nuisance factor is not measurable and thought 
to be very influential, it may also be called an ex- 
perimental risk factor. Such factors can inflate ex- 
perimental error, making it more difficult to assess 
the significance of control variables. They can also 
bias the results. For the CNC-machining example, 
the nuisance factors are as shown in Table 5. 

Experiment designers have a set of passive strat- 
egies (randomization, blocking, analysis of covari- 
ante, stratified analysis) to reduce the impact of nui- 
sance factors. These strategies can have a major effect 
on the experimental design. They may be constrained 

Table 4. Held-Constant Factors 

Factor 
(units) 

Desired experi- Measurement 
mental level and precision-how How to control Anticipated 
allowable range known? (in experiment) effects 

Type of cutting Standard type Not sure, but Use one type None 
fluid thought to be 

adequate 
Temperature of lOO-110°F. when 1-2” F. (estimate) Do runs after None 

cutting fluid machine is machine has 
(degrees F.) warmed up reached 100 

Operator Several operators - Use one “mid- None 
normally work level” 
in the process operator 

Titanium Material Precision of lab Use one lot Slight 
forgings properties may tests unknown (or block on 

vary from unit forging lot, 
to unit only if 

necessary) 
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Table 5. Nuisance Factors 

Measurement Strategy (e.g., 
Nuisance factor precision-how randomization, 

(units) known? blocking, etc. ) Anticipated effects 

Viscosity of Standard viscosity Measure viscosity at None to slight 
cutting fluid start and end 
Ambient 1 - 2” F. by room Make runs below Slight, unless very 
temperature (OF.1 thermometer 80°F. hot weather 

(estimate) 
Spindle - Block or randomize Spindle-to-spindle 

on machine spindle variation could be 
large 

Vibration of ? Do not move heavy Severe vibration can 
machine during objects in CNC introduce variation 
operation machine shop within an impeller 

by limits on the number of observations, costs of 
changing control-variable settings, and logistic con- 
siderations. In the CNC-machining example, the only 
nuisance factor to have potentially serious effects and 
for which blocking seems appropriate is the machine 
spindle effect (though it may be necessary to also 
block on titanium forgings). The machine has four 
spindles. requiring a design with four blocks or ran- 
domizing on all four. Blocking will introduce a bias 
in the estimates confounded with the blocking vari- 
able(s), whereas randomization will inflate the ex- 
perimental error. The other two factors are dealt 
with by ensuring that they stay below levels at which 
problems may be encountered. 

7. INTERACTIONS 

The interactions sheet is self-explanatory. Unfor- 
tunately, the concept of interactions is not self-ex- 
planatory-even among intelligent, mathematically 
inclined people in the sciences. Hence, as part of the 
package of guide sheets, it is helpful to include a 
tutorial. The graphical portion of the tutorial is pre- 
sented in Figure 6. An additional, expository de- 
scription of interactions is sometimes included, but 
it is not shown here. The interactions table explicitly 
recognizes only pairwise interactions of linear terms. 
It provides an opportunity for the experimenters to 
capture knowledge or speculation that certain pair- 
wise interactions may be present and others are un- 
likely to be present. This input is helpful when the 
experiment is later designed-to choose resolution, 
or more generally to choose which effects should or 
should not be confounded. Higher order effects may 
also be important but are not captured in the guide 
sheets. The interaction sheet for the CNC-machining 
example is shown in Table 6. 

A helpful way to use this matrix is to avoid dis- 
cussing every possible pairwise interaction one at a 
time but instead use the process of elimination or 
inclusion; that is. if interactions are generally im- 
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portant, a question can be posed: “Are there any 
interactions that are arguably not present‘?” If main 
effects dominate interactions, a question can be posed: 
“Are there any interactions that must be estimated 
clear of main effects?” Alternatively, a secret-ballot 
vote on potentially important interactions can be held 
among experimenters and other knowledgeable in- 
vestigators, with each receiving, say. 100 votes to 
spread among the interactions. 

The remaining items are found on the Master Guide 
Sheet. 

8. RESTRICTIONS, PREFERENCES FOR THE 
DESIGN, ANALYSIS, AND PRESENTATION 

Box, Hunter, and others have repeatedly ex- 
horted, “Attention to detail can determine the suc- 
cess or failure of the experiment.” Item 8 in Figure 
2 is part of heeding that advice. Theoretical optimal 
experimental design and pracfical experimental de- 
sign are often worlds apart, and restrictions often 
make the difference. Since a single unknown restric- 
tion can render worthless an otherwise well-consid- 
ered, laboriously developed design. the statistician 
should encourage experimenters to be quick to put 
these limitations and pitfalls on the table. In partic- 
ular, there appears to be a lack of awareness in the 
applied statistics community of the prevalence of ex- 
periments with unidentified split-plot structure. Be- 
cause it is unidentified (different experimental units 
used for different parts of the experiment), the anal- 
ysis is often done incorrectly-using the wrong error 
terms to test statistical significance. The discussion 
of the issues surrounding the choice of experimental 
unit and analysis strategies goes beyond the scope of 
this article but should take place on the experimen- 
tation team. 

Items 10 and 11 of Figure 2 are intended for the 
following three circumstances: First. when expcri- 
mcnters are statistically sophisticated and have a good 
idea of appropriate designs or analysis techniques; 
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Interactions (Tutorial) 

Taylor series approximation: 
f(x,y) = ao + alx + bly + CIIXY + a2x2 

Plot la 

R 1 NO A*B Interaction R 

I 
Low 

A 
High 

b2y2+ . . . 

Plot lb 

A*B Interaction 

Low 
A 

High 

Simple, linear, additive 
model Is sufficient. 

Factors A and B interact, but no 
quadratic term Is present (assumed). 

Table la - No A-B Interaction Table lb - A.8 Interaction 
Low A High A LOW A Hlgh A 

1;: :Eje :I f$j 

Figure 6. Graphical (tutorial) Presentation of Interactions. 

second, when the experiment has been preceded by different sizes of experimental units, and logistics. 
experiments in which a particular design or technique Then, it may be useful to (a) choose candidate de- 
proved to be useful; third, when, on considering de- signs, (b) review them with the experimenters in the 
signs, analyses, and plots, the experimenters may context of the collected information to determine if 
want to change information in items 2-7-for ex- any of the designs should be dropped from further 
ample, narrowing the scope of the objective or in- consideration, and (c) write an experimental design 
creasing the number of settings for a control variable. proposal that contains (at least) one or more pro- 

9. THE NEXT STAGE 
posed designs; a comparative analysis of the designs 
with respect to number of runs, resolution (or aliased 

By the time the experimentation team has come effects), number of distinct control variable combi- 
to a consensus concerning the information collected nations, prediction error standard deviation, and so 
in items l-10 of the guide sheet, the statistician (or forth; a design recommendation with justification; 
surrogate) will have had the opportunity to step be- and copies of the completed guide sheets. 
yond the generic confines of the guide sheet and When an experimental design has been selected, 
discuss more problem-specific issues that will affect the sheets are used to help launch supportive tasks 
the experimental design. such as multilevel factors. required for the experiment to be successful. This 

Table 6. Interactions 

Control 
variable y shift z shift Vendor a shift Speed Height Feed 

x shift P 
y shift - P 
z shift - - P 
Vendor - - - P 
a shift - - - - 
Speed - - - - F, D 
Height - - - - - - 

NOTE. Response vanables are P = profile difference. F = surface ftnish, and D = surface defects. 
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involves issues addressed in items 11 and 12 on the 
guide sheet. Additionally, there will be logistical 
planning and planning for measurement capability 
studies, process capability studies, preexperiments 
to quantify the effects of various factors (held-con- 
stant and nuisance) on response variables, and trial 
runs. 

In regard to item 12 of Figure 2, an experiment 
without a coordinator will probably fail. Though a 
statistician can play this role, it is often better played 
by another member of the experimentation team, 
who can “champion” the experiment among peers. 
The statistician (or surrogate) can play a strong sup- 
port role and be primarily responsible for that in 
which he or she is professionally trained-the design 
and analysis of the experiment and not the execution. 

Finally, considering item 13 of the guide sheet, the 
team should entertain the idea of trial runs to precede 
the experiment-especially if this is the first in a 
series of experiments. A trial run can consist of a 
centerpoint run or a small part (perhaps a block) of 
the experiment. The first and most important pur- 
pose of trial runs is to learn and refine experimental 
procedures without risking the loss of time and ex- 
pensive experimental samples. Most experiments in- 
volve people (and sometimes machines) doing things 
that they have never done before. Usually some prac- 
tice helps. 

A second important reason for trial runs is to es- 
timate experimental error before expending major 
resources. An unanticipated large experimental er- 
ror could lead to canceling or redesigning the ex- 
periment, widening the ranges of settings, increasing 
the number of replicates, or refining the experimen- 
tal procedure. An unanticipated small experimental 
error (does this ever really happen?) could have op- 
posite effects on plans or cause the experimenters to 
reassess whether the estimate is right or complete. 

A third reason is that trial runs are also excellent 
opportunities to ensure that data-acquisition systems 
are functioning and will permit experimental runs to 
be conducted as fast as had been planned. 

Last, a fourth reason is that trial runs may yield 
results so unexpected that the experimenters decide 
to change their experimental plans. 

Naturally, the feasibility and advisability of con- 
ducting trial runs depends on the context, but the 
experiment teams in which we have been involved 
have never regretted conducting trial runs. Some trial 
runs have saved experiments from disaster. 

10. SUMMARY 

To conduct complex experiments, careful planning 
with attention to detail is critical. Predesign planning 
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is one part of the process by which experiments are 
conceived, planned, executed, and interpreted. It is 
often the part claimed by no one, hence it is often 
done informally-and sloppily. The use of predesign 
experiment guide sheets provides a way to system- 
atize the process by which an experimentation team 
does this planning, to help people to (a) more clearly 
define the objectives and scope of an experiment and 
(b) gather information needed to design an experi- 
ment. 
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