La clave del uso de los métodos multivariados está en:

Clasificación de técnicas

Ordenación sin restricción:

Objetivo: Estraer gradientes de máxima variación.

Análisis aglomerativo (cluster):

Objetivo: Establecer grupos de entes similares.

Discriminación:

Objetivo: Prueba para diferenciar entre grupos de entidades y predecir la pertenencia a un grupo.

Ordenación con restricción;

Objetivo: Extraer gradientes de variación en variables dependientes explicadas por variables independientes.

Escalamiento multidimensional o Análisis de Coordenadas Principales.

MDS o PCoA

peces <- read.csv2("peces.csv", row.names = 1)
sumEsp  <- apply(peces,1,sum)
peces   <- peces[sumEsp!=0,]
require(vegan)
peces.perfil <- decostand(peces, method = "total")
mat_dist <- dist(peces.perfil, method = "manhattan")
print(mat_dist)
           1         2         3         4         5         6         7         9        10        11
2  1.1666667                                                                                          
3  1.3750000 0.2500000                                                                                
4  1.6190476 0.6666667 0.5416667                                                                      
5  1.8823529 1.5882353 1.4632353 0.9215686                                                            
6  1.7142857 0.8571429 0.7619048 0.3809524 0.8179272                                                  
7  1.3750000 0.3750000 0.2500000 0.5714286 1.3455882 0.6369048                                        
9  2.0000000 1.4285714 1.4285714 1.2380952 1.1848739 1.0000000 1.3035714                              
10 1.8571429 0.7857143 0.7142857 0.7142857 1.0672269 0.6190476 0.5357143 1.1428571                    
11 1.4545455 0.6060606 0.6477273 0.8658009 1.4705882 0.9696970 0.6477273 1.4935065 0.9220779          
12 1.4444444 0.5555556 0.5555556 0.6349206 1.4771242 0.7777778 0.4444444 1.3174603 0.8571429 0.3535354
13 1.4736842 0.7368421 0.7368421 0.9323308 1.5882353 1.1228070 0.7631579 1.6466165 1.1203008 0.4019139
14 1.6428571 1.0000000 0.9285714 0.7857143 1.3739496 0.8571429 0.9285714 1.5000000 1.0714286 0.6688312
15 1.7575758 1.2121212 1.2121212 0.9610390 1.1105169 0.7792208 0.9621212 1.3116883 0.8268398 0.8484848
16 1.8500000 1.4500000 1.4000000 1.1095238 0.9647059 0.9595238 1.2250000 1.4071429 1.0071429 1.3181818
17 1.9090909 1.5454545 1.5000000 1.2272727 1.0695187 1.0411255 1.3295455 1.4480519 1.2727273 1.3636364
18 1.9523810 1.6666667 1.6190476 1.2380952 1.0504202 1.0476190 1.4464286 1.4285714 1.3333333 1.4285714
19 2.0000000 1.6521739 1.6086957 1.3395445 1.0690537 1.1573499 1.5217391 1.3043478 1.3788820 1.6442688
20 2.0000000 1.8928571 1.8214286 1.4642857 1.0609244 1.2380952 1.7142857 1.4642857 1.5714286 1.7857143
21 2.0000000 1.9354839 1.8387097 1.4869432 1.1404175 1.2964670 1.8064516 1.5806452 1.6635945 1.8709677
22 2.0000000 1.9722222 1.8888889 1.4920635 1.1601307 1.2976190 1.7777778 1.6111111 1.6388889 1.8611111
23 2.0000000 2.0000000 2.0000000 1.9047619 1.5882353 1.7142857 1.8750000 1.0000000 1.7142857 1.8181818
24 2.0000000 2.0000000 2.0000000 1.8095238 1.4980392 1.6190476 1.8750000 1.4666667 1.6000000 1.8181818
25 2.0000000 2.0000000 1.8750000 1.6277056 1.1016043 1.4372294 1.7500000 1.6363636 1.4935065 1.8181818
26 2.0000000 1.9534884 1.8604651 1.5304540 1.1846785 1.3444075 1.8139535 1.5348837 1.6744186 1.8604651
27 2.0000000 1.9682540 1.8432540 1.5238095 1.1839402 1.3333333 1.8095238 1.5714286 1.6825397 1.8730159
28 2.0000000 1.9714286 1.8857143 1.5428571 1.2285714 1.3523810 1.8000000 1.6000000 1.6857143 1.8571429
29 1.9770115 1.9310345 1.8160920 1.4679803 1.2183908 1.3234811 1.7701149 1.6781609 1.6551724 1.8160920
30 2.0000000 2.0000000 1.9101124 1.5398609 1.2134831 1.3772071 1.8651685 1.7078652 1.7528090 1.9325843
          12        13        14        15        16        17        18        19        20        21
2                                                                                                     
3                                                                                                     
4                                                                                                     
5                                                                                                     
6                                                                                                     
7                                                                                                     
9                                                                                                     
10                                                                                                    
11                                                                                                    
12                                                                                                    
13 0.3859649                                                                                          
14 0.4920635 0.3684211                                                                                
15 0.7979798 0.7910686 0.4978355                                                                      
16 1.2500000 1.1789474 0.8714286 0.5757576                                                            
17 1.3636364 1.3636364 1.1298701 0.9242424 0.5545455                                                  
18 1.4603175 1.5238095 1.2619048 1.0216450 0.6976190 0.2835498                                        
19 1.6086957 1.6155606 1.3788820 1.2094862 0.8369565 0.6284585 0.5196687                              
20 1.7857143 1.8928571 1.6071429 1.4112554 1.1142857 0.8084416 0.6190476 0.4596273                    
21 1.8709677 1.9354839 1.6566820 1.5034213 1.1919355 0.9120235 0.7373272 0.5287518 0.2419355          
22 1.8611111 1.9722222 1.6865079 1.4747475 1.2055556 0.9419192 0.7420635 0.6219807 0.3492063 0.2123656
23 1.8888889 2.0000000 1.9285714 1.8181818 1.8500000 1.7272727 1.6666667 1.6086957 1.5357143 1.6129032
24 1.8888889 2.0000000 1.8571429 1.6969697 1.7000000 1.5909091 1.4285714 1.2579710 1.1166667 1.1569892
25 1.8888889 2.0000000 1.7857143 1.5151515 1.5181818 1.5000000 1.3809524 1.2529644 1.1071429 1.1290323
26 1.8604651 1.9534884 1.6677741 1.5391121 1.2813953 1.0845666 0.9180509 0.6622851 0.3770764 0.3098275
27 1.8730159 1.9682540 1.6825397 1.5064935 1.2642857 1.0598846 0.8888889 0.7211870 0.4126984 0.2754736
28 1.8603175 1.9714286 1.6857143 1.5393939 1.2714286 1.0948052 0.9047619 0.7465839 0.4714286 0.3622120
29 1.8160920 1.8850575 1.5993432 1.4336468 1.1511494 0.8589342 0.6896552 0.6786607 0.4503284 0.3018168
30 1.9325843 2.0000000 1.7223114 1.6247872 1.3028090 1.0270684 0.8389513 0.7650220 0.4991974 0.3581008
          22        23        24        25        26        27        28        29
2                                                                                 
3                                                                                 
4                                                                                 
5                                                                                 
6                                                                                 
7                                                                                 
9                                                                                 
10                                                                                
11                                                                                
12                                                                                
13                                                                                
14                                                                                
15                                                                                
16                                                                                
17                                                                                
18                                                                                
19                                                                                
20                                                                                
21                                                                                
22                                                                                
23 1.6111111                                                                      
24 1.0888889 0.8000000                                                            
25 1.1388889 1.0909091 0.7757576                                                  
26 0.3488372 1.4883721 0.9364341 0.9852008                                        
27 0.2738095 1.5873016 1.0476190 1.0793651 0.2148394                              
28 0.2650794 1.6000000 1.0666667 1.1428571 0.3023256 0.2158730                    
29 0.3045977 1.6781609 1.1954023 1.2183908 0.3838546 0.3108922 0.2866995          
30 0.3258427 1.7078652 1.2808989 1.2134831 0.4724327 0.4080614 0.2783307 0.2985923
mds <- cmdscale(mat_dist)
row.names(peces.perfil)
 [1] "1"  "2"  "3"  "4"  "5"  "6"  "7"  "9"  "10" "11" "12" "13" "14" "15" "16" "17" "18" "19" "20" "21"
[21] "22" "23" "24" "25" "26" "27" "28" "29" "30"
plot(mds, type = "n")
abline(h = 0, col = "red", lty = 2)
abline(v = 0, col = "red", lty = 2)
text(mds[,1], mds[,2], labels = row.names(peces.perfil))

nMDS

peces <- read.csv2("peces.csv", row.names = 1)
sumEsp  <- apply(peces,1,sum)
peces   <- peces[sumEsp!=0,]
require(vegan)
peces.perfil <- decostand(peces, method = "normalize")
mat_dist <- dist(peces.perfil, method = "minkowski", p = 1/3)
print(mat_dist)
             1           2           3           4           5           6           7           9
2    11.277923                                                                                    
3    24.396166    5.144579                                                                        
4   136.642143   63.686838   37.578332                                                            
5   417.235145  407.424089  399.973315  280.309993                                                
6   247.254359  161.500267  115.361353   86.481289  241.094158                                    
7    37.762409   14.779360   16.809063   73.208578  368.626035   89.704459                        
9    90.426484   67.431567  113.292446  186.553314  315.040862  220.402706  109.784208            
10   93.355680   48.971249   56.030138  103.771646  276.310942  104.889295   32.130348  139.251561
11   61.628072   40.165985   52.069600  166.197245  453.767565  291.576364   54.400825  171.804575
12   66.794399   27.782106   41.068761  128.691115  599.641426  245.147683   20.986309  157.816810
13   71.338729   36.129811   49.423584  229.104362  747.278948  421.161832   83.211561  255.316235
14  241.342063  144.495084  135.810470  210.193947  826.854341  364.390230  165.039463  406.539486
15  375.997453  273.111645  340.466297  360.411886  672.488199  339.970461  243.433876  404.046438
16  957.352022  782.124391  801.331881  729.080071  740.858338  643.231159  767.916493  848.140607
17 1951.222791 1678.330758 1665.840804 1430.509736 1613.933936 1342.135864 1598.472950 1703.861281
18 2375.530339 2193.158505 2118.844807 1867.572443 1914.750778 1701.589150 2094.174844 1975.157279
19 2419.703575 2117.992654 2140.778037 2054.771834 1808.874098 1865.716656 2055.158998 1608.167657
20 2434.966881 2640.526730 2553.932847 2330.808533 1687.229611 1825.162319 2458.542666 1909.032506
21 2710.097683 3051.214855 2986.011752 2390.560100 1999.304652 2331.557239 2756.584351 2337.157360
22 2529.499546 3152.489528 3070.509221 2577.486485 2159.175474 2199.134109 2973.872358 2406.729633
23   39.943048  116.763599  157.179982  337.250832  452.070003  364.326638  149.685491   59.395393
24  228.146659  435.480428  529.248915  719.087687  924.968689  729.331640  508.434569  326.172789
25  253.304115  473.929078  455.375467  542.838067  465.386260  512.003484  427.684828  396.499614
26 2058.868823 2558.899428 2491.818032 2257.399191 1731.245449 1917.530141 2396.585202 1911.619214
27 2310.209913 2889.138056 2841.199118 2569.463347 2111.714635 2198.957681 2639.285418 2218.958613
28 2426.102351 3031.816653 2952.797510 2652.592737 2216.934108 1889.367550 2737.493297 2303.387043
29 3263.562622 3712.188183 3652.449535 2956.391564 2694.604200 2916.497120 3474.277269 3088.617232
30 2366.694410 3239.023848 3159.089024 2563.939895 2227.772163 2386.745644 2954.104971 2613.002595
            10          11          12          13          14          15          16          17
2                                                                                                 
3                                                                                                 
4                                                                                                 
5                                                                                                 
6                                                                                                 
7                                                                                                 
9                                                                                                 
10                                                                                                
11  113.753118                                                                                    
12  111.154597   23.757193                                                                        
13  176.276092   37.615994   32.235014                                                            
14  267.612395  139.764695   80.799805   86.295463                                                
15  180.643392  212.758253  178.152540  233.175051  183.902116                                    
16  661.944231  868.619474  873.301097  969.256635  713.019154  472.250730                        
17 1412.164358 1545.655482 1668.098939 1747.594700 1348.107522 1094.633962  729.431647            
18 1653.031658 2099.272982 2178.916458 2267.347830 1995.407457 1543.551422 1183.937262  494.192271
19 2100.226025 2996.098518 2735.483427 3082.163619 2547.541233 2404.543699 1158.739211 1400.143340
20 2354.260940 2981.463451 3311.117757 3741.604809 3574.304481 3248.758604 2440.503256 2011.910391
21 2877.428664 3563.274931 3696.238907 4297.580732 4064.564324 3910.677396 2919.518078 2420.396457
22 2749.076457 3626.530835 3907.334567 4426.975545 4230.411376 3732.859735 3055.670132 2638.432509
23  174.811895  187.395179  217.957196  296.101117  533.024352  637.635882 1268.562117 1948.783957
24  355.923898  587.244517  656.107977  819.316114 1052.693680 1117.807147 1754.855708 2363.787254
25  358.281757  615.720449  698.378486  877.597546  968.098052  978.879215 1565.323396 2291.021824
26 2395.029837 2810.100412 3193.136290 3666.623999 3450.492473 3145.389274 2453.890904 2438.887728
27 2630.902337 3261.672779 3581.951639 4094.028693 3906.411636 3592.581287 2823.413024 2720.041560
28 2696.910263 3495.450125 3768.668490 4275.291836 4037.593811 3496.022827 2942.247608 3069.871215
29 3306.028767 3866.723252 4190.041392 4410.850458 4219.422939 3732.366137 3257.639483 2356.709442
30 2996.818287 3774.441134 3925.458459 4552.268870 4221.941442 4051.938534 3134.685702 2861.449320
            18          19          20          21          22          23          24          25
2                                                                                                 
3                                                                                                 
4                                                                                                 
5                                                                                                 
6                                                                                                 
7                                                                                                 
9                                                                                                 
10                                                                                                
11                                                                                                
12                                                                                                
13                                                                                                
14                                                                                                
15                                                                                                
16                                                                                                
17                                                                                                
18                                                                                                
19 1208.800093                                                                                    
20 1557.358769  863.968142                                                                        
21 2044.299574 1053.711148  424.484807                                                            
22 1989.806154 1231.218575  611.498595  454.534902                                                
23 2140.073653 1907.754175 1733.849475 2099.047866 1938.388215                                    
24 2044.335085 1800.396503 1225.315366 1576.408281 1315.445173   67.771831                        
25 2147.829189 1837.101027 1372.746876 1553.554374 1364.813165  114.160032  203.733414            
26 2396.240349 1138.990921  711.510651  587.826658  551.250198 1440.243385 1052.375778 1241.769487
27 2380.288031 1478.898975  836.685595  531.441812  446.314934 1751.564182 1269.053833 1415.740838
28 2589.102320 1566.740296  935.246765  750.070052  315.691188 1846.607655 1282.019979 1454.256036
29 1942.429106 1572.161363 1157.365497  698.737222  773.986237 2898.966461 2208.232157 2136.578940
30 2339.574321 1622.441593  939.264761  683.681526  489.065599 1976.685623 1516.951374 1284.534819
            26          27          28          29
2                                                 
3                                                 
4                                                 
5                                                 
6                                                 
7                                                 
9                                                 
10                                                
11                                                
12                                                
13                                                
14                                                
15                                                
16                                                
17                                                
18                                                
19                                                
20                                                
21                                                
22                                                
23                                                
24                                                
25                                                
26                                                
27  372.331702                                    
28  452.803346  341.753748                        
29 1062.206121  698.068939  789.558094            
30  825.847492  706.563907  383.698694  808.054338
require(MASS)
nMDS <- isoMDS(mat_dist)
initial  value 14.528956 
final  value 14.528914 
converged
plot(nMDS$points[,1], nMDS$points[,2], type = "n")
abline(h = 0, col = "red", lty = 2)
abline(v = 0, col = "red", lty = 2)
text(nMDS$points[,1], nMDS$points[,2], labels = row.names(peces.perfil))

Análisis de correspondencia (CA).

t1 <- read.csv2("tablaCont.csv", row.names = 1)
t1
margin.table(as.matrix(t1), 1)
Bacter Microb  Plant   Fung   Fish   Bird Insect 
  1144    179   3334    563   1466    429    637 
margin.table(as.matrix(t1), 2)
Cluster     PCA     MDS    PCoA     CCA     RDA  MANOVA  Mantel  ANOSIM     CVA 
   3246    2277     432      82     968     247     169     170      75      86 
chi1 <- chisq.test(t1)
Chi-squared approximation may be incorrect
print(chi1)

    Pearson's Chi-squared test

data:  t1
X-squared = 578.16, df = 54, p-value < 2.2e-16
print(chi1$observed)
       Cluster PCA MDS PCoA CCA RDA MANOVA Mantel ANOSIM CVA
Bacter     553 434  51    5  37  21     15      5     10  13
Microb      82  72   7    2   4   4      2      3      1   2
Plant     1344 950 153   57 517 123     63     77     20  30
Fung       304 153  16    6  48  16      5      6      1   8
Fish       441 493 143    4 198  40     53     42     34  18
Bird       176  88  23    3  91  15      9     18      2   4
Insect     346  87  39    5  73  28     22     19      7  11
print(chi1$expected)
          Cluster       PCA        MDS      PCoA       CCA        RDA    MANOVA    Mantel    ANOSIM
Bacter  479.02786 336.02786  63.752322 12.101135 142.85243  36.450980 24.940144 25.087719 11.068111
Microb   74.95279  52.57779   9.975232  1.893447  22.35191   5.703431  3.902348  3.925439  1.731811
Plant  1396.04799 979.29799 185.795666 35.266770 416.31992 106.230392 72.683953 73.114035 32.256192
Fung    235.74536 165.37036  31.374613  5.955366  70.30237  17.938725 12.273865 12.346491  5.446981
Fish    613.85913 430.60913  81.696594 15.507224 183.06089  46.710784 31.960010 32.149123 14.183437
Bird    179.63545 126.01045  23.907121  4.537926  53.56966  13.669118  9.352554  9.407895  4.150542
Insect  266.73142 187.10642  35.498452  6.738132  79.54283  20.296569 13.887126 13.969298  6.162926
             CVA
Bacter 12.691434
Microb  1.985810
Plant  36.987100
Fung    6.245872
Fish   16.263674
Bird    4.759288
Insect  7.066821
require(ca)
ca_t1 <- ca(t1)
ca_t1

 Principal inertias (eigenvalues):
           1        2        3        4        5        6      
Value      0.035233 0.026746 0.011064 0.001164 0.000318 5.6e-05
Percentage 47.24%   35.86%   14.83%   1.56%    0.43%    0.08%  


 Rows:
           Bacter    Microb     Plant     Fung      Fish      Bird    Insect
Mass     0.147575  0.023091  0.430083 0.072626  0.189112  0.055341  0.082172
ChiDist  0.364326  0.379370  0.130142 0.289552  0.329517  0.332658  0.376355
Inertia  0.019588  0.003323  0.007284 0.006089  0.020534  0.006124  0.011639
Dim. 1   1.841903  1.814691 -0.334880 1.253003 -0.910201 -1.358911 -0.162620
Dim. 2  -0.689812 -0.717055  0.437299 0.993077 -1.680987  1.065769  1.424732


 Columns:
         Cluster       PCA       MDS      PCoA       CCA       RDA    MANOVA    Mantel    ANOSIM      CVA
Mass    0.418731  0.293731  0.055728  0.010578  0.124871  0.031863  0.021801  0.021930  0.009675 0.011094
ChiDist 0.180789  0.221392  0.382311  0.574617  0.397353  0.237501  0.414914  0.436890  0.708188 0.224016
Inertia 0.013686  0.014397  0.008145  0.003493  0.019716  0.001797  0.003753  0.004186  0.004852 0.000557
Dim. 1  0.658768  0.517444 -1.138329 -0.471807 -1.944623 -0.788318 -1.501268 -2.174671 -1.421668 0.244303
Dim. 2  0.731977 -1.059702 -1.666058  2.207099  0.717044  1.014040 -0.992172  0.348263 -3.499596 0.024122
plot(ca_t1)

plot(ca_t1, lines = TRUE)

plot(ca_t1, arrows = c(TRUE, TRUE))

Análisis de correspondencia sin tendencia DCA.

ejemplo1 <- read.csv2("ejemplo1_sitio.csv", row.names = 1)
row.names(ejemplo1) <- paste("Sitio", row.names(ejemplo1))
ejemplo1
require(ca) 
ca1 <- ca(ejemplo1)
ca1

 Principal inertias (eigenvalues):
           1        2       3        4        5        6        7        8        9        10      
Value      0.945428 0.79626 0.590795 0.377372 0.198258 0.078079 0.057411 0.056247 0.041075 0.038788
Percentage 28.59%   24.08%  17.86%   11.41%   5.99%    2.36%    1.74%    1.7%     1.24%    1.17%   
           11       12       13       14       15       16       17       18       19      
Value      0.036979 0.024534 0.019418 0.017685 0.017089 0.006671 0.002179 0.001904 0.001052
Percentage 1.12%    0.74%    0.59%    0.53%    0.52%    0.2%     0.07%    0.06%    0.03%   


 Rows:
          Sitio 1   Sitio 2   Sitio 3   Sitio 4   Sitio 5   Sitio 6   Sitio 7   Sitio 8   Sitio 9  Sitio 10
Mass     0.031915  0.042553  0.053191  0.053191  0.053191  0.053191  0.053191  0.053191  0.053191  0.053191
ChiDist  2.679829  2.185654  1.857238  1.716974  1.661325  1.661325  1.661325  1.661325  1.661325  1.661325
Inertia  0.229196  0.203280  0.183475  0.156809  0.146809  0.146809  0.146809  0.146809  0.146809  0.146809
Dim. 1  -1.426828 -1.391228 -1.343991 -1.248889 -1.123087 -0.964471 -0.779625 -0.572853 -0.350233 -0.117831
Dim. 2   1.465127  1.319301  1.137720  0.786881  0.367102 -0.100200 -0.553615 -0.947228 -1.236105 -1.389072
         Sitio 11  Sitio 12  Sitio 13  Sitio 14  Sitio 15 Sitio 16 Sitio 17 Sitio 18 Sitio 19 Sitio 20
Mass     0.053191  0.053191  0.053191  0.053191  0.053191 0.053191 0.053191 0.053191 0.042553 0.031915
ChiDist  1.661325  1.661325  1.661325  1.661325  1.661325 1.661325 1.716974 1.857238 2.185654 2.679829
Inertia  0.146809  0.146809  0.146809  0.146809  0.146809 0.146809 0.156809 0.183475 0.203280 0.229196
Dim. 1   0.117831  0.350233  0.572853  0.779625  0.964471 1.123087 1.248889 1.343991 1.391228 1.426828
Dim. 2  -1.389072 -1.236105 -0.947228 -0.553615 -0.100200 0.367102 0.786881 1.137720 1.319301 1.465127


 Columns:
              SP1       SP2       SP3       SP4       SP5       SP6       SP7       SP8       SP9      SP10
Mass     0.031915  0.042553  0.053191  0.053191  0.053191  0.053191  0.053191  0.053191  0.053191  0.053191
ChiDist  2.679829  2.185654  1.857238  1.716974  1.661325  1.661325  1.661325  1.661325  1.661325  1.661325
Inertia  0.229196  0.203280  0.183475  0.156809  0.146809  0.146809  0.146809  0.146809  0.146809  0.146809
Dim. 1  -1.426828 -1.391228 -1.343991 -1.248889 -1.123087 -0.964471 -0.779625 -0.572853 -0.350233 -0.117831
Dim. 2   1.465127  1.319301  1.137720  0.786881  0.367102 -0.100200 -0.553615 -0.947228 -1.236105 -1.389072
             SP11      SP12      SP13      SP14      SP15     SP16     SP17     SP18     SP19     SP20
Mass     0.053191  0.053191  0.053191  0.053191  0.053191 0.053191 0.053191 0.053191 0.042553 0.031915
ChiDist  1.661325  1.661325  1.661325  1.661325  1.661325 1.661325 1.716974 1.857238 2.185654 2.679829
Inertia  0.146809  0.146809  0.146809  0.146809  0.146809 0.146809 0.156809 0.183475 0.203280 0.229196
Dim. 1   0.117831  0.350233  0.572853  0.779625  0.964471 1.123087 1.248889 1.343991 1.391228 1.426828
Dim. 2  -1.389072 -1.236105 -0.947228 -0.553615 -0.100200 0.367102 0.786881 1.137720 1.319301 1.465127
plot(ca1)

plot(ca1, lines = c(TRUE, FALSE))

plot(ca1, arrows = c(TRUE, FALSE))

require(vegan)
dca1 <- decorana(ejemplo1)
dca1

Call:
decorana(veg = ejemplo1) 

Detrended correspondence analysis with 26 segments.
Rescaling of axes with 4 iterations.

                   DCA1    DCA2    DCA3    DCA4
Eigenvalues      0.9351 0.23818 0.11471 0.05417
Decorana values  0.9454 0.06092 0.04539 0.02980
Axis lengths    11.0826 1.85490 1.28126 0.98343
plot(dca1)

Análisis de redundancia

peces   <- read.csv2("peces.csv", row.names = 1)
ambient <- read.csv2("ambientales.csv",enc="latin1",row.names=1)
sumEsp  <- apply(peces,1,sum)
peces   <- peces[sumEsp!=0,]
ambient <- ambient[sumEsp!=0,]
require(vegan)
peces.hell <- decostand(peces, "hell")
pca <- rda(peces.hell)
print(summary(pca))

Call:
rda(X = peces.hell) 

Partitioning of variance:
              Inertia Proportion
Total          0.5025          1
Unconstrained  0.5025          1

Eigenvalues, and their contribution to the variance 

Importance of components:
                         PC1     PC2     PC3     PC4     PC5     PC6     PC7     PC8      PC9     PC10
Eigenvalue            0.2580 0.06424 0.04632 0.03850 0.02197 0.01675 0.01472 0.01156 0.006936 0.006019
Proportion Explained  0.5133 0.12784 0.09218 0.07662 0.04371 0.03334 0.02930 0.02300 0.013800 0.011980
Cumulative Proportion 0.5133 0.64118 0.73337 0.80999 0.85370 0.88704 0.91634 0.93934 0.953140 0.965120
                          PC11     PC12     PC13     PC14     PC15     PC16      PC17      PC18      PC19
Eigenvalue            0.004412 0.002982 0.002713 0.001835 0.001455 0.001118 0.0008309 0.0005415 0.0004755
Proportion Explained  0.008780 0.005930 0.005400 0.003650 0.002890 0.002220 0.0016500 0.0010800 0.0009500
Cumulative Proportion 0.973900 0.979840 0.985240 0.988890 0.991780 0.994010 0.9956600 0.9967400 0.9976900
                          PC20      PC21      PC22      PC23      PC24     PC25      PC26      PC27
Eigenvalue            0.000368 0.0002765 0.0002253 0.0001429 7.618e-05 4.99e-05 1.526e-05 9.118e-06
Proportion Explained  0.000730 0.0005500 0.0004500 0.0002800 1.500e-04 1.00e-04 3.000e-05 2.000e-05
Cumulative Proportion 0.998420 0.9989700 0.9994200 0.9997000 9.999e-01 1.00e+00 1.000e+00 1.000e+00

Scaling 2 for species and site scores
* Species are scaled proportional to eigenvalues
* Sites are unscaled: weighted dispersion equal on all dimensions
* General scaling constant of scores:  1.93676 


Species scores

          PC1      PC2       PC3        PC4        PC5       PC6
Cogo  0.17336  0.08295 -0.064963  0.2539861 -0.0285801  0.019057
Satr  0.64860  0.01162 -0.261994 -0.1606020 -0.0745819 -0.088616
Phph  0.51810  0.14773  0.165304  0.0241017  0.1012928  0.104748
Neba  0.38606  0.16615  0.242995 -0.0275216  0.1258011  0.048299
Thth  0.16893  0.06274 -0.096143  0.2426514  0.0140574  0.062117
Teso  0.07786  0.14644 -0.031402  0.2339394 -0.1032338 -0.040810
Chna -0.18491  0.04901 -0.045107  0.0199377  0.0687305  0.009650
Chto -0.14644  0.17834 -0.010937  0.0649955 -0.0006229 -0.106955
Lele -0.11436  0.15673  0.142223 -0.0127266 -0.1989404  0.013897
Lece -0.09682 -0.15449  0.242943  0.1124210  0.0233830 -0.039996
Baba -0.19826  0.21211 -0.053980  0.0969899  0.0067098 -0.035442
Spbi -0.17689  0.16250 -0.033112  0.0397113  0.0323159 -0.072908
Gogo -0.23138  0.09782  0.064144 -0.0013887 -0.1503303  0.130575
Eslu -0.15129  0.12804  0.040303 -0.1203826 -0.1006077  0.066242
Pefl -0.15719  0.18144  0.057029 -0.0940032 -0.0412984 -0.060409
Rham -0.22853  0.13870 -0.062197 -0.0125024  0.0798647 -0.006907
Legi -0.22790  0.08231 -0.065797  0.0172143  0.0611434 -0.001407
Scer -0.19221  0.03090 -0.006264 -0.0739133 -0.0731548  0.074581
Cyca -0.18699  0.13388 -0.050804  0.0001803  0.0403961 -0.031005
Titi -0.19169  0.15719  0.114415 -0.0818330  0.0142624 -0.072024
Abbr -0.20174  0.08807 -0.067086 -0.0529106  0.0737228  0.037312
Icme -0.14717  0.05829 -0.067311 -0.0458414  0.0501013  0.031605
Acce -0.30155 -0.01785 -0.084333 -0.0181797  0.0226500  0.126639
Ruru -0.35245 -0.14076  0.168014  0.0185946  0.0213462 -0.129788
Blbj -0.24317  0.03679 -0.082731 -0.0384489  0.0939828  0.063369
Alal -0.42536 -0.26155 -0.054190  0.1021959 -0.0078085  0.044540
Anan -0.20631  0.11889 -0.062079 -0.0175733  0.0718743 -0.001956


Site scores (weighted sums of species scores)

         PC1      PC2      PC3      PC4       PC5       PC6
1   0.367401 -0.39935 -1.08857 -0.63304 -0.512027 -0.858378
2   0.503582 -0.05683 -0.19259 -0.43441  0.389533  0.069451
3   0.461709  0.02262 -0.06522 -0.49798  0.309425  0.270577
4   0.298336  0.15130  0.26748 -0.53196  0.003088  0.184821
5  -0.002222  0.07631  0.54769 -0.50936 -0.780261 -0.169353
6   0.212816  0.08345  0.55091 -0.42210 -0.139518 -0.104278
7   0.438055 -0.06114  0.15590 -0.31150  0.158686  0.036565
9   0.040794 -0.44269  0.89022  0.09609  0.641193 -0.646943
10  0.298011 -0.01094  0.56837 -0.10013 -0.088124  0.515072
11  0.467609 -0.12622 -0.15505  0.29459  0.325464  0.200912
12  0.476845 -0.07691 -0.16329  0.29384  0.360112  0.194576
13  0.483620  0.06649 -0.44723  0.53734  0.048587  0.182565
14  0.371728  0.16555 -0.21939  0.62130 -0.183604  0.364847
15  0.277048  0.23525  0.08928  0.61773 -0.475769  0.124107
16  0.077024  0.47455  0.17116  0.34361 -0.570434 -0.572740
17 -0.053860  0.42290  0.02810  0.42376 -0.059203 -0.586419
18 -0.135418  0.37780  0.03233  0.39706 -0.007199 -0.347064
19 -0.269281  0.30751  0.18022  0.09354  0.178657 -0.016299
20 -0.378830  0.19764  0.04939 -0.03438  0.157660 -0.056696
21 -0.409369  0.22888 -0.08401 -0.12823  0.152787  0.096105
22 -0.443679  0.17698 -0.13708 -0.13152  0.103294  0.030004
23 -0.242292 -1.11711  0.15254  0.40512  0.045573 -0.576778
24 -0.358333 -0.83372 -0.17314  0.27200  0.181192  0.347231
25 -0.325288 -0.61983  0.10487  0.01059 -1.034438  0.750325
26 -0.441703  0.02111 -0.13742 -0.14346  0.200775  0.244356
27 -0.444529  0.12735 -0.15915 -0.14112  0.179240  0.123487
28 -0.446407  0.12774 -0.18830 -0.15467  0.239617  0.117101
29 -0.355788  0.28044 -0.28006 -0.02003  0.110181  0.079568
30 -0.467578  0.20086 -0.29797 -0.21269  0.065512  0.003276
plot(pca)

rda1 <- rda(peces.hell ~ das, data = ambient)
print(summary(rda1))

Call:
rda(formula = peces.hell ~ das, data = ambient) 

Partitioning of variance:
              Inertia Proportion
Total          0.5025     1.0000
Constrained    0.1958     0.3897
Unconstrained  0.3067     0.6103

Eigenvalues, and their contribution to the variance 

Importance of components:
                        RDA1     PC1     PC2     PC3     PC4     PC5     PC6     PC7      PC8      PC9
Eigenvalue            0.1958 0.09117 0.06422 0.04311 0.02416 0.02106 0.01481 0.01254 0.009112 0.006351
Proportion Explained  0.3897 0.18142 0.12779 0.08580 0.04808 0.04191 0.02948 0.02496 0.018130 0.012640
Cumulative Proportion 0.3897 0.57115 0.69894 0.78473 0.83282 0.87473 0.90421 0.92917 0.947300 0.959940
                          PC10     PC11     PC12     PC13     PC14     PC15      PC16      PC17    PC18
Eigenvalue            0.005495 0.003709 0.002727 0.001898 0.001581 0.001325 0.0008844 0.0006854 0.00051
Proportion Explained  0.010940 0.007380 0.005430 0.003780 0.003150 0.002640 0.0017600 0.0013600 0.00101
Cumulative Proportion 0.970880 0.978260 0.983680 0.987460 0.990600 0.993240 0.9950000 0.9963600 0.99738
                           PC19      PC20     PC21      PC22      PC23      PC24      PC25      PC26
Eigenvalue            0.0004486 0.0002837 0.000226 0.0001584 9.257e-05 5.608e-05 3.792e-05 9.552e-06
Proportion Explained  0.0008900 0.0005600 0.000450 0.0003200 1.800e-04 1.100e-04 8.000e-05 2.000e-05
Cumulative Proportion 0.9982700 0.9988400 0.999290 0.9996000 9.998e-01 9.999e-01 1.000e+00 1.000e+00
                           PC27
Eigenvalue            3.924e-06
Proportion Explained  1.000e-05
Cumulative Proportion 1.000e+00

Accumulated constrained eigenvalues
Importance of components:
                        RDA1
Eigenvalue            0.1958
Proportion Explained  1.0000
Cumulative Proportion 1.0000

Scaling 2 for species and site scores
* Species are scaled proportional to eigenvalues
* Sites are unscaled: weighted dispersion equal on all dimensions
* General scaling constant of scores:  1.93676 


Species scores

          RDA1      PC1       PC2       PC3       PC4        PC5
Cogo -0.054132 -0.26670  0.072574 -0.118965  0.106809 -0.0092829
Satr -0.563253 -0.34682  0.002396  0.285639  0.039973  0.0387857
Phph -0.453769 -0.22134  0.145793 -0.171021 -0.171870 -0.0008564
Neba -0.382083 -0.07689  0.169537 -0.189650 -0.189145 -0.0330382
Thth -0.038674 -0.28506  0.051343 -0.091509  0.063509 -0.0238737
Teso -0.006115 -0.16481  0.139501 -0.119248  0.187036  0.0130230
Chna  0.156045  0.07766  0.049611  0.034025  0.017828 -0.0871564
Chto  0.123202  0.05978  0.178890 -0.015869  0.112737 -0.0846815
Lele  0.066149  0.13027  0.162331 -0.094654  0.063977  0.1897790
Lece  0.065344  0.11122 -0.149219 -0.256890 -0.019550 -0.0187035
Baba  0.200088  0.02637  0.210338 -0.006774  0.089524 -0.0597238
Spbi  0.160102  0.06094  0.162736  0.013448  0.065122 -0.0874777
Gogo  0.186926  0.14132  0.101802 -0.040207  0.035095  0.1744898
Eslu  0.090870  0.15212  0.133539  0.051232 -0.016236  0.1289982
Pefl  0.075648  0.17860  0.187890  0.030826  0.028736  0.0111957
Rham  0.212821  0.07728  0.139039  0.063477 -0.017498 -0.0804411
Legi  0.218037  0.06567  0.081990  0.048383  0.009392 -0.0729919
Scer  0.157697  0.11562  0.033883  0.055059 -0.018099  0.1066249
Cyca  0.182597  0.05232  0.133759  0.044959  0.006184 -0.0528951
Titi  0.098267  0.21472  0.165208 -0.021798 -0.014714 -0.0265350
Abbr  0.198039  0.06101  0.088221  0.084953 -0.072427 -0.0324701
Icme  0.166663  0.01609  0.057266  0.075136 -0.074418 -0.0038267
Acce  0.292661  0.09091 -0.017930  0.079826 -0.041147  0.0247274
Ruru  0.230053  0.30620 -0.130915 -0.114718  0.066907 -0.0915881
Blbj  0.234965  0.07384  0.036746  0.090127 -0.070914 -0.0515381
Alal  0.405078  0.14062 -0.261311 -0.007415  0.084857 -0.0279890
Anan  0.199828  0.06079  0.118864  0.063470 -0.028011 -0.0637102


Site scores (weighted sums of species scores)

       RDA1       PC1       PC2       PC3      PC4      PC5
1  -0.40668 -0.065821 -0.407807  1.312429  0.77785 -0.05002
2  -0.57998 -0.134813 -0.057311  0.395158 -0.37960 -0.24293
3  -0.54086 -0.058244  0.026460  0.328167 -0.48406 -0.05987
4  -0.38105  0.255766  0.169243  0.116491 -0.34313  0.18667
5  -0.06567  0.773673  0.113233 -0.038417  0.29829  0.64123
6  -0.29850  0.402236  0.108700 -0.159995 -0.20399  0.22232
7  -0.51559 -0.081633 -0.056764  0.030035 -0.40480  0.04585
9  -0.09653  0.528062 -0.414208 -0.719433 -0.23337 -0.72142
10 -0.36181 -0.016846 -0.001888 -0.444843 -0.53594  0.50470
11 -0.49424 -0.596733 -0.147467 -0.124483 -0.24943 -0.15582
12 -0.50461 -0.637646 -0.099507 -0.124287 -0.28459 -0.17548
13 -0.48695 -0.799590  0.033361 -0.026249  0.18035 -0.08636
14 -0.36742 -0.628544  0.139621 -0.240333  0.26155  0.16656
15 -0.28047 -0.439398  0.219177 -0.470599  0.37290  0.39517
16 -0.08806 -0.097701  0.472382 -0.320512  0.63894  0.18043
17  0.07154 -0.001907  0.420440 -0.226331  0.61156 -0.39984
18  0.16512  0.076867  0.377426 -0.210080  0.51255 -0.35684
19  0.29492  0.325021  0.318340 -0.146884  0.11912 -0.29882
20  0.41926  0.410196  0.209720  0.043049  0.12501 -0.28197
21  0.46157  0.328809  0.236827  0.184337 -0.01809 -0.15575
22  0.50374  0.327608  0.183949  0.229166  0.02125 -0.12546
23  0.27559  0.034710 -1.118655 -0.358632  0.32228 -0.33338
24  0.42607  0.080491 -0.838217 -0.009696  0.10633 -0.20429
25  0.36405  0.113298 -0.617354 -0.107446  0.19297  1.20923
26  0.50398  0.139969  0.021783  0.187543 -0.26562 -0.02284
27  0.50836  0.093350  0.126264  0.197870 -0.24491 -0.02795
28  0.51366  0.024389  0.124019  0.213270 -0.33913 -0.03695
29  0.42158 -0.232392  0.266901  0.180625 -0.23607  0.04984
30  0.53897 -0.123176  0.191332  0.310080 -0.31820  0.13401


Site constraints (linear combinations of constraining variables)

       RDA1       PC1       PC2       PC3      PC4      PC5
1  -0.50684 -0.065821 -0.407807  1.312429  0.77785 -0.05002
2  -0.50184 -0.134813 -0.057311  0.395158 -0.37960 -0.24293
3  -0.48080 -0.058244  0.026460  0.328167 -0.48406 -0.05987
4  -0.45898  0.255766  0.169243  0.116491 -0.34313  0.18667
5  -0.45109  0.773673  0.113233 -0.038417  0.29829  0.64123
6  -0.42242  0.402236  0.108700 -0.159995 -0.20399  0.22232
7  -0.41085 -0.081633 -0.056764  0.030035 -0.40480  0.04585
9  -0.32223  0.528062 -0.414208 -0.719433 -0.23337 -0.72142
10 -0.24728 -0.016846 -0.001888 -0.444843 -0.53594  0.50470
11 -0.18312 -0.596733 -0.147467 -0.124483 -0.24943 -0.15582
12 -0.15945 -0.637646 -0.099507 -0.124287 -0.28459 -0.17548
13 -0.13000 -0.799590  0.033361 -0.026249  0.18035 -0.08636
14 -0.10738 -0.628544  0.139621 -0.240333  0.26155  0.16656
15 -0.07504 -0.439398  0.219177 -0.470599  0.37290  0.39517
16 -0.01876 -0.097701  0.472382 -0.320512  0.63894  0.18043
17  0.01437 -0.001907  0.420440 -0.226331  0.61156 -0.39984
18  0.04724  0.076867  0.377426 -0.210080  0.51255 -0.35684
19  0.08301  0.325021  0.318340 -0.146884  0.11912 -0.29882
20  0.14375  0.410196  0.209720  0.043049  0.12501 -0.28197
21  0.23185  0.328809  0.236827  0.184337 -0.01809 -0.15575
22  0.26551  0.327608  0.183949  0.229166  0.02125 -0.12546
23  0.29260  0.034710 -1.118655 -0.358632  0.32228 -0.33338
24  0.31995  0.080491 -0.838217 -0.009696  0.10633 -0.20429
25  0.35440  0.113298 -0.617354 -0.107446  0.19297  1.20923
26  0.43355  0.139969  0.021783  0.187543 -0.26562 -0.02284
27  0.47378  0.093350  0.126264  0.197870 -0.24491 -0.02795
28  0.53032  0.024389  0.124019  0.213270 -0.33913 -0.03695
29  0.60212 -0.232392  0.266901  0.180625 -0.23607  0.04984
30  0.68364 -0.123176  0.191332  0.310080 -0.31820  0.13401


Biplot scores for constraining variables

    RDA1 PC1 PC2 PC3 PC4 PC5
das    1   0   0   0   0   0
plot(rda1)

rda2 <- rda(peces.hell ~ ., data = ambient)
print(summary(rda2))

Call:
rda(formula = peces.hell ~ das + alt + slo + flo + pH + har +      pho + nit + amm + oxy + bdo, data = ambient) 

Partitioning of variance:
              Inertia Proportion
Total          0.5025     1.0000
Constrained    0.3676     0.7314
Unconstrained  0.1350     0.2686

Eigenvalues, and their contribution to the variance 

Importance of components:
                        RDA1    RDA2    RDA3    RDA4     RDA5     RDA6     RDA7     RDA8     RDA9     RDA10
Eigenvalue            0.2302 0.05347 0.03396 0.02762 0.006804 0.006271 0.003154 0.003017 0.001417 0.0008703
Proportion Explained  0.4581 0.10640 0.06758 0.05496 0.013540 0.012480 0.006280 0.006000 0.002820 0.0017300
Cumulative Proportion 0.4581 0.56451 0.63208 0.68704 0.700580 0.713060 0.719340 0.725340 0.728160 0.7298900
                          RDA11     PC1     PC2     PC3     PC4      PC5      PC6      PC7      PC8
Eigenvalue            0.0007768 0.04383 0.02270 0.01774 0.01413 0.009321 0.008515 0.005219 0.004581
Proportion Explained  0.0015500 0.08722 0.04518 0.03529 0.02811 0.018550 0.016940 0.010390 0.009120
Cumulative Proportion 0.7314400 0.81865 0.86384 0.89913 0.92724 0.945790 0.962730 0.973120 0.982240
                           PC9     PC10     PC11      PC12      PC13      PC14     PC15      PC16      PC17
Eigenvalue            0.002958 0.002013 0.001342 0.0009585 0.0007297 0.0003818 0.000334 0.0001299 7.886e-05
Proportion Explained  0.005890 0.004010 0.002670 0.0019100 0.0014500 0.0007600 0.000660 0.0002600 1.600e-04
Cumulative Proportion 0.988130 0.992130 0.994800 0.9967100 0.9981600 0.9989200 0.999580 0.9998400 1.000e+00

Accumulated constrained eigenvalues
Importance of components:
                        RDA1    RDA2    RDA3    RDA4     RDA5     RDA6     RDA7     RDA8     RDA9     RDA10
Eigenvalue            0.2302 0.05347 0.03396 0.02762 0.006804 0.006271 0.003154 0.003017 0.001417 0.0008703
Proportion Explained  0.6263 0.14547 0.09239 0.07513 0.018510 0.017060 0.008580 0.008210 0.003850 0.0023700
Cumulative Proportion 0.6263 0.77178 0.86417 0.93930 0.957810 0.974870 0.983460 0.991660 0.995520 0.9978900
                          RDA11
Eigenvalue            0.0007768
Proportion Explained  0.0021100
Cumulative Proportion 1.0000000

Scaling 2 for species and site scores
* Species are scaled proportional to eigenvalues
* Sites are unscaled: weighted dispersion equal on all dimensions
* General scaling constant of scores:  1.93676 


Species scores

         RDA1       RDA2     RDA3      RDA4      RDA5      RDA6
Cogo  0.14261  0.1180253 -0.22904  0.086458 -0.028042 -0.013691
Satr  0.63485  0.0273682  0.20085  0.163764  0.019805  0.005858
Phph  0.48361  0.1077673 -0.07980 -0.133313  0.034833 -0.004144
Neba  0.36118  0.1090800 -0.01143 -0.219383  0.029874  0.037263
Thth  0.14244  0.1122444 -0.22054  0.106069 -0.044501 -0.008622
Teso  0.07292  0.1280078 -0.18815  0.059441 -0.008623 -0.001556
Chna -0.17236  0.0784750 -0.01415 -0.012202  0.024412  0.062130
Chto -0.12548  0.1660939 -0.03644  0.002070  0.087969  0.023223
Lele -0.07912  0.0398662 -0.02835 -0.050439  0.011284 -0.093644
Lece -0.09581 -0.1434198 -0.13995 -0.122810 -0.079051 -0.011121
Baba -0.17975  0.2151163 -0.04819  0.043810  0.015552  0.014657
Spbi -0.15589  0.1641509 -0.01369  0.003517  0.059083  0.001573
Gogo -0.20301  0.0348690 -0.03783 -0.027001  0.044723 -0.081508
Eslu -0.11339  0.0291095  0.06240 -0.048558  0.031607 -0.069690
Pefl -0.09975  0.1120913  0.04452 -0.095320  0.011882  0.011139
Rham -0.21017  0.1602633  0.04184  0.021526  0.010718  0.001693
Legi -0.23232  0.1103727  0.01809 -0.005716 -0.011545  0.043028
Scer -0.16516 -0.0006841  0.03199  0.006260  0.013625 -0.098070
Cyca -0.18069  0.1411915  0.03496  0.016758 -0.006660  0.003324
Titi -0.14230  0.1179099  0.05249 -0.141851 -0.032298  0.007223
Abbr -0.19435  0.1092121  0.07605  0.033536 -0.055275  0.006789
Icme -0.15512  0.0727019  0.07999  0.034135 -0.088141 -0.009924
Acce -0.31286  0.0113937  0.03276  0.017709 -0.001507 -0.043683
Ruru -0.31310 -0.1517049 -0.05604 -0.140122  0.004038  0.040470
Blbj -0.24750  0.0837801  0.06250  0.012999 -0.059178  0.048588
Alal -0.43297 -0.2232880 -0.09319  0.124580  0.089120  0.048742
Anan -0.19684  0.1387592  0.04844  0.020291 -0.007706 -0.002579


Site scores (weighted sums of species scores)

       RDA1     RDA2     RDA3     RDA4       RDA5     RDA6
1   0.39199 -0.31267  0.98240  1.29491 -0.1258591  0.32865
2   0.52860 -0.04444  0.49719  0.10778  0.4259551  0.63121
3   0.48740 -0.02096  0.49331 -0.07076  0.5699500  0.29678
4   0.32937  0.02809  0.38254 -0.51181  0.2540256 -0.18083
5   0.02656 -0.18286  0.21678 -0.72427  0.0467813 -1.40635
6   0.24215 -0.08873  0.21046 -0.77964 -0.0138240 -0.32595
7   0.46183 -0.11999  0.28437 -0.18382  0.0403432  0.11466
9   0.04221 -0.52153 -0.30776 -1.06830 -1.1177967  0.90976
10  0.31401 -0.14722 -0.08142 -0.55441  0.0004456 -0.69622
11  0.48177 -0.03460 -0.30084  0.30647 -0.6211610  0.24013
12  0.49116  0.01863 -0.28336  0.28353 -0.5526465  0.38811
13  0.49826  0.19287 -0.45932  0.66506 -0.3554733  0.30170
14  0.38432  0.23745 -0.61472  0.44511 -0.3586002 -0.25255
15  0.29122  0.24047 -0.65399  0.13806 -0.5744138 -0.61858
16  0.09316  0.42148 -0.35490 -0.15339  0.5215487 -0.37988
17 -0.04925  0.45811 -0.39677 -0.01491  0.9780228  0.37292
18 -0.13761  0.42321 -0.38275 -0.05496  0.8161603  0.16502
19 -0.27972  0.31288 -0.11236 -0.33397  0.8933487  0.22061
20 -0.39479  0.22514  0.04995 -0.18906  0.5524046  0.07848
21 -0.42845  0.27228  0.18669 -0.06116  0.1685934 -0.05714
22 -0.46606  0.23214  0.22711  0.01341 -0.2537680 -0.02033
23 -0.27461 -1.14655 -0.45652  0.29007 -0.0135080  1.25334
24 -0.40481 -0.76490 -0.22822  0.37504 -0.0609283  1.09137
25 -0.34882 -0.79890 -0.18120  0.26592  0.6572636 -1.77138
26 -0.46948  0.07575  0.22954  0.02782 -0.3290586 -0.01789
27 -0.47071  0.19146  0.25713  0.03821 -0.3683865 -0.05750
28 -0.47379  0.20692  0.28560  0.06099 -0.5260879 -0.05532
29 -0.37500  0.36927  0.15499  0.19260 -0.2675599 -0.13575
30 -0.49089  0.27719  0.35606  0.19549 -0.3857710 -0.41707


Site constraints (linear combinations of constraining variables)

       RDA1       RDA2     RDA3      RDA4     RDA5      RDA6
1   0.56175 -0.1760841  0.88764  0.754729  0.05699 -0.024789
2   0.27817  0.0278236  0.64854 -0.186273  0.71868  0.103142
3   0.40029 -0.1410937  0.44478  0.093254  0.06243  0.159225
4   0.38057  0.0304488  0.27060 -0.451187  0.11348 -0.163639
5   0.28434 -0.4313776 -0.07763 -0.624922 -0.31890 -0.121072
6   0.32365 -0.1717502  0.33216 -0.239434  0.10094  0.430241
7   0.43342 -0.1878085  0.23023 -0.249967 -0.43848 -0.112702
9   0.03876 -0.2453624 -0.06488 -1.063159 -0.28405 -0.165997
10  0.20896 -0.1304587  0.09944 -0.029712 -0.15900 -0.003754
11  0.40310  0.2072872 -0.38689  0.263810 -0.34896 -0.675910
12  0.31060  0.1676808 -0.35285  0.131850  0.23982  0.374171
13  0.36401  0.1083071 -0.45977  0.254110 -0.16169  0.154682
14  0.37243  0.1568990 -0.54561  0.280403 -0.29513  0.137795
15  0.30217  0.2952073 -0.51539  0.302620 -0.26909 -0.210679
16 -0.03361  0.2527439 -0.16089 -0.109020  0.07654 -0.063949
17 -0.04798  0.2826767 -0.42392 -0.163557  0.50606  0.277953
18 -0.04201  0.3220218 -0.27114 -0.101241  0.36862 -0.205147
19 -0.04238  0.3815154 -0.25768 -0.005306  0.34826 -0.051361
20 -0.22510  0.3772267 -0.06452  0.029576  0.73223  0.129096
21 -0.36748  0.2531034  0.06637 -0.113143  0.22778  0.340391
22 -0.31101  0.0588354  0.04318  0.184265 -0.22087  0.507177
23 -0.23685 -1.0546821 -0.31876  0.653124 -0.04596  0.560361
24 -0.50645 -0.5459548 -0.31521 -0.311281 -0.17450  0.594229
25 -0.37598 -0.9060399 -0.21468  0.249405  0.74559 -1.161192
26 -0.50636  0.0003718  0.12134 -0.254528 -0.36086 -0.278472
27 -0.57930  0.0667865  0.37489  0.211246 -0.22598  0.098458
28 -0.60704  0.3723919  0.35636 -0.090151 -0.04124 -0.118013
29 -0.34377  0.3294603  0.26629  0.309673 -0.30573 -0.235032
30 -0.43691  0.2998244  0.28800  0.274817 -0.64698 -0.275212


Biplot scores for constraining variables

       RDA1     RDA2     RDA3     RDA4     RDA5     RDA6
das -0.9128  0.12530 -0.14564  0.28559 -0.14025 -0.08596
alt  0.8174 -0.19940  0.42653 -0.31363  0.04070  0.04191
slo  0.7304 -0.18160  0.44131  0.12857 -0.03275  0.05724
flo -0.7734  0.22945 -0.11776  0.35275 -0.20906 -0.20090
pH   0.1032  0.17963 -0.23622  0.15717 -0.27998 -0.00646
har -0.5651  0.06594 -0.58956  0.05411 -0.38278 -0.21829
pho -0.4885 -0.66510 -0.22158  0.20580  0.19624 -0.37929
nit -0.7699 -0.21306 -0.25074  0.19239  0.30094 -0.31772
amm -0.4700 -0.70062 -0.19662  0.17917  0.34014 -0.29055
oxy  0.7593  0.57745 -0.03543  0.21067  0.03237  0.15692
bdo -0.5124 -0.80242 -0.19822  0.12204  0.05668 -0.05770
plot(rda2)

Análisis de correspondencia canónico

peces   <- read.csv2("peces.csv", row.names = 1)
ambient <- read.csv2("ambientales.csv",enc="latin1",row.names=1)
sumEsp  <- apply(peces,1,sum)
peces   <- peces[sumEsp!=0,]
ambient <- ambient[sumEsp!=0,]
require(vegan)
cca1 <- cca(peces)
print(summary(cca1))

Call:
cca(X = peces) 

Partitioning of mean squared contingency coefficient:
              Inertia Proportion
Total           1.167          1
Unconstrained   1.167          1

Eigenvalues, and their contribution to the mean squared contingency coefficient 

Importance of components:
                        CA1    CA2     CA3     CA4     CA5     CA6     CA7     CA8     CA9    CA10    CA11
Eigenvalue            0.601 0.1444 0.10729 0.08337 0.05158 0.04185 0.03389 0.02883 0.01684 0.01083 0.01014
Proportion Explained  0.515 0.1237 0.09195 0.07145 0.04420 0.03586 0.02904 0.02470 0.01443 0.00928 0.00869
Cumulative Proportion 0.515 0.6388 0.73069 0.80214 0.84634 0.88220 0.91124 0.93594 0.95038 0.95965 0.96835
                          CA12     CA13     CA14     CA15     CA16     CA17     CA18     CA19     CA20
Eigenvalue            0.007886 0.006123 0.004867 0.004606 0.003844 0.003067 0.001823 0.001642 0.001295
Proportion Explained  0.006760 0.005250 0.004170 0.003950 0.003290 0.002630 0.001560 0.001410 0.001110
Cumulative Proportion 0.975100 0.980350 0.984520 0.988470 0.991760 0.994390 0.995950 0.997360 0.998470
                           CA21      CA22      CA23      CA24      CA25      CA26
Eigenvalue            0.0008775 0.0004217 0.0002149 0.0001528 8.949e-05 2.695e-05
Proportion Explained  0.0007500 0.0003600 0.0001800 0.0001300 8.000e-05 2.000e-05
Cumulative Proportion 0.9992200 0.9995900 0.9997700 0.9999000 1.000e+00 1.000e+00

Scaling 2 for species and site scores
* Species are scaled proportional to eigenvalues
* Sites are unscaled: weighted dispersion equal on all dimensions


Species scores

          CA1       CA2      CA3       CA4       CA5       CA6
Cogo  1.50075 -1.410293  0.26049 -0.307203  0.271777 -0.003465
Satr  1.66167  0.444129  0.57571  0.166073 -0.261870 -0.326590
Phph  1.28545  0.285328 -0.04768  0.018126  0.043847  0.200732
Neba  0.98662  0.360900 -0.35265 -0.009021 -0.012231  0.253429
Thth  1.55554 -1.389752  0.80505 -0.468471  0.471301  0.225409
Teso  0.99709 -1.479902 -0.48035  0.079397 -0.105715 -0.332445
Chna -0.54916 -0.051534  0.01123 -0.096004 -0.382763  0.134807
Chto -0.18478 -0.437710 -0.57438  0.424267 -0.587150  0.091866
Lele  0.01337 -0.095342 -0.57672  0.212017  0.126668 -0.389103
Lece  0.01078  0.140577 -0.34811 -0.538268  0.185286  0.167087
Baba -0.33363 -0.300682 -0.04929  0.170961 -0.157203  0.103068
Spbi -0.38357 -0.255310 -0.20136  0.374057 -0.385866  0.239001
Gogo -0.32152 -0.034382 -0.07423 -0.031236  0.014417 -0.156351
Eslu -0.26165  0.187282  0.00617  0.183771  0.295142 -0.262808
Pefl -0.28913  0.121044 -0.18919  0.367615  0.218087 -0.163675
Rham -0.60298 -0.057369  0.20341  0.214299 -0.050977  0.211926
Legi -0.58669 -0.082467  0.21198  0.050175 -0.120456  0.108724
Scer -0.61815  0.124733  0.13339  0.147190  0.317736 -0.340380
Cyca -0.57951 -0.110732  0.20173  0.308547  0.006854  0.153224
Titi -0.37880  0.138023 -0.07825  0.095793  0.256285 -0.029245
Abbr -0.70235  0.011155  0.40242  0.211582  0.138186  0.132297
Icme -0.73238 -0.009098  0.55678  0.321852  0.281812  0.172271
Acce -0.69300  0.038971  0.37688 -0.183965 -0.051945 -0.011126
Ruru -0.44181  0.176915 -0.23691 -0.345104  0.129676 -0.043802
Blbj -0.70928  0.032317  0.40924  0.030224  0.049050  0.114560
Alal -0.63114  0.053594  0.15204 -0.661381 -0.414796 -0.206611
Anan -0.63578 -0.041894  0.30093  0.224044  0.030444  0.203160


Site scores (weighted averages of species scores)

        CA1       CA2        CA3      CA4      CA5      CA6
1   2.76488  3.076306  5.3657489  1.99192 -5.07714 -7.80447
2   2.27540  2.565531  1.2659130  0.87538 -1.89139 -0.13887
3   2.01823  2.441224  0.5144079  0.79436 -1.03741  0.56015
4   1.28485  1.935664 -0.2509482  0.76470  0.54752  0.10579
5   0.08875  1.015182 -1.4555434  0.47672  2.69249 -2.92498
6   1.03188  1.712163 -0.9544059  0.01584  0.91932  0.39856
7   1.91427  2.256208 -0.0001407  0.39844 -1.07017  0.32127
9   0.25591  1.443008 -2.5777721 -3.41400  2.36613  2.71741
10  1.24517  1.526391 -1.9635663 -0.41230  0.69647  1.51859
11  2.14501  0.110278  1.6108693 -0.82023  0.53918  1.01153
12  2.17418 -0.251649  1.5845397 -0.81483  0.52623  1.05501
13  2.30944 -2.034439  1.9181448 -0.60481  0.64435 -0.14844
14  1.87141 -2.262503  1.1066796 -0.80840  1.09542  0.11038
15  1.34659 -1.805967 -0.6441505 -0.52803  0.76871 -0.67165
16  0.70214 -1.501167 -1.9735888  0.98502 -0.93585 -1.27168
17  0.28775 -0.836803 -1.2259108  0.73302 -1.57036  0.57315
18  0.05299 -0.647950 -0.9234228  0.35770 -0.95401  0.77738
19 -0.20584 -0.007252 -1.0154343  0.07041 -1.03450  0.51442
20 -0.57879  0.042849 -0.3660551 -0.15019 -0.61357  0.10115
21 -0.67320  0.038875  0.1194956  0.17256 -0.14686 -0.12018
22 -0.71933  0.014694  0.2204186  0.13598  0.09459 -0.02068
23 -0.70438  0.735398 -0.6546250 -6.61523 -2.49441 -1.73215
24 -0.83976  0.390120  0.5605295 -4.38864 -2.56916 -0.96702
25 -0.68476  0.418842 -0.2860819 -2.80336 -0.37540 -3.93791
26 -0.75808  0.210204  0.5894091 -0.70004 -0.01880 -0.10779
27 -0.75046  0.100869  0.5531191 -0.12946  0.29164  0.11280
28 -0.77878  0.088976  0.7379012  0.05204  0.40940  0.43236
29 -0.60815 -0.203235  0.5522726  0.43621  0.15010  0.25618
30 -0.80860 -0.019592  0.6686542  0.88136  0.52744  0.16456
plot(cca1)

cca2 <- cca(peces, ambient)
print(summary(cca2))

Call:
cca(X = peces, Y = ambient) 

Partitioning of mean squared contingency coefficient:
              Inertia Proportion
Total          1.1669     1.0000
Constrained    0.8377     0.7179
Unconstrained  0.3292     0.2821

Eigenvalues, and their contribution to the mean squared contingency coefficient 

Importance of components:
                        CCA1   CCA2    CCA3    CCA4    CCA5    CCA6     CCA7    CCA8     CCA9   CCA10
Eigenvalue            0.5345 0.1227 0.06876 0.04886 0.02746 0.01295 0.009775 0.00545 0.003523 0.00217
Proportion Explained  0.4580 0.1052 0.05892 0.04187 0.02353 0.01110 0.008380 0.00467 0.003020 0.00186
Cumulative Proportion 0.4580 0.5632 0.62211 0.66399 0.68752 0.69862 0.707000 0.71167 0.714690 0.71655
                         CCA11     CA1     CA2     CA3     CA4     CA5     CA6     CA7      CA8      CA9
Eigenvalue            0.001596 0.10182 0.05329 0.05021 0.03452 0.03000 0.01456 0.01226 0.008865 0.007317
Proportion Explained  0.001370 0.08726 0.04567 0.04303 0.02958 0.02571 0.01248 0.01050 0.007600 0.006270
Cumulative Proportion 0.717910 0.80517 0.85084 0.89387 0.92345 0.94917 0.96165 0.97215 0.979740 0.986010
                         CA10     CA11     CA12     CA13     CA14      CA15      CA16      CA17
Eigenvalue            0.00457 0.003873 0.002968 0.002148 0.001493 0.0008308 0.0003886 4.723e-05
Proportion Explained  0.00392 0.003320 0.002540 0.001840 0.001280 0.0007100 0.0003300 4.000e-05
Cumulative Proportion 0.98993 0.993250 0.995790 0.997630 0.998910 0.9996300 0.9999600 1.000e+00

Accumulated constrained eigenvalues
Importance of components:
                        CCA1   CCA2    CCA3    CCA4    CCA5    CCA6     CCA7    CCA8     CCA9   CCA10
Eigenvalue            0.5345 0.1227 0.06876 0.04886 0.02746 0.01295 0.009775 0.00545 0.003523 0.00217
Proportion Explained  0.6380 0.1465 0.08207 0.05833 0.03278 0.01546 0.011670 0.00651 0.004210 0.00259
Cumulative Proportion 0.6380 0.7845 0.86656 0.92489 0.95767 0.97313 0.984790 0.99130 0.995500 0.99809
                         CCA11
Eigenvalue            0.001596
Proportion Explained  0.001910
Cumulative Proportion 1.000000

Scaling 2 for species and site scores
* Species are scaled proportional to eigenvalues
* Sites are unscaled: weighted dispersion equal on all dimensions


Species scores

          CCA1     CCA2      CCA3     CCA4      CCA5      CCA6
Cogo -1.276782  1.35155 -0.012375  0.22531 -0.179903  0.094379
Satr -1.525689 -0.43466 -0.328892  0.23630  0.144768 -0.007892
Phph -1.221136 -0.19104  0.007043 -0.05474  0.018108 -0.045958
Neba -0.966876 -0.29832  0.078083 -0.12854  0.052918  0.061401
Thth -1.324767  1.38168 -0.151752  0.48930 -0.180045 -0.293303
Teso -0.895169  1.18994  0.050588 -0.06064 -0.162988  0.235364
Chna  0.494080  0.18453  0.118825 -0.10125  0.356934  0.081358
Chto  0.151333  0.43227  0.125378 -0.53252  0.352606 -0.021676
Lele -0.119548  0.03933  0.260802 -0.15326 -0.191334  0.051822
Lece -0.003793 -0.08117  0.386934  0.01045 -0.255979  0.006033
Baba  0.305425  0.28556 -0.108575 -0.18426  0.185070  0.114957
Spbi  0.354748  0.31834 -0.044857 -0.41401  0.222240 -0.351709
Gogo  0.262245  0.02464  0.094701  0.07675  0.113405  0.065630
Eslu  0.166490 -0.28428  0.007552  0.02723 -0.130462 -0.084917
Pefl  0.144865 -0.16017  0.054768 -0.26509 -0.145556 -0.168154
Rham  0.578999  0.07021 -0.304787 -0.12841  0.100704 -0.052385
Legi  0.620722  0.04340 -0.207869 -0.01401  0.030758  0.011737
Scer  0.523613 -0.14218 -0.008426  0.13359 -0.163790 -0.216274
Cyca  0.592932  0.06934 -0.382972 -0.05516 -0.071659  0.034195
Titi  0.295852 -0.18634 -0.010118 -0.14245 -0.070774  0.152197
Abbr  0.700227 -0.04107 -0.444469  0.08575 -0.065584  0.126693
Icme  0.779693 -0.08488 -0.700727  0.17060 -0.349148 -0.167956
Acce  0.758681 -0.07352 -0.075256  0.26356 -0.009589  0.100114
Ruru  0.380007 -0.14619  0.392859 -0.05620 -0.128640 -0.006855
Blbj  0.744602 -0.05553 -0.330245  0.11600 -0.050556  0.140966
Alal  0.670437  0.01773  0.410319  0.53876  0.271721 -0.064363
Anan  0.651162  0.01894 -0.384970 -0.05095 -0.032570 -0.058778


Site scores (weighted averages of species scores)

       CCA1      CCA2     CCA3     CCA4      CCA5    CCA6
1  -2.85448 -3.542243 -4.78349  4.83584  5.271517 -0.6094
2  -2.40317 -2.602684 -1.67506  0.98386  2.897990 -0.2515
3  -2.15182 -2.498007 -1.10107  0.37389  2.158658 -0.2276
4  -1.41353 -2.063451 -0.20347 -0.48937  0.292725 -0.8701
5  -0.20080 -1.272187  1.69105 -1.16361 -3.297892 -1.4784
6  -1.14732 -1.793445  0.68997 -0.76727 -0.632502  1.0056
7  -2.04292 -2.277225 -0.52553  0.22641  1.396340  0.6832
9  -0.31069 -1.317289  3.88257 -1.10418 -4.391402  1.6171
10 -1.37143 -1.426835  1.45628 -1.03158 -0.916454  1.2974
11 -2.21687  0.211582 -0.86950  2.02128 -0.186283 -2.3797
12 -2.24382  0.567984 -1.00620  2.14659  0.064873 -1.5851
13 -2.36193  2.360284 -1.40230  2.63669 -0.585878 -1.4910
14 -1.91679  2.553732 -0.73172  2.02824 -1.054392 -0.2921
15 -1.40724  1.948920  0.38348  0.44007 -1.601560  3.3146
16 -0.76771  1.491747  0.73233 -2.02643 -0.161016  3.1721
17 -0.32180  1.012062  0.60116 -2.04569  1.611913 -1.7428
18 -0.07148  0.812691  0.63263 -1.62433  1.139577 -1.7708
19  0.19279  0.099176  0.90109 -1.25404  1.701956  0.4343
20  0.59825  0.003113  0.64635 -0.59114  1.200796 -0.4261
21  0.70530 -0.074133 -0.03580 -0.19148  0.618312  0.1850
22  0.76014 -0.073194 -0.23365 -0.06468 -0.005157  0.9481
23  0.80314 -0.390997  5.81927  5.27872  1.445825 -2.5009
24  0.96586 -0.171744  3.04080  4.37524  2.477896  0.9084
25  0.72138 -0.433817  3.15322  3.71187  0.536863 -1.4876
26  0.82289 -0.272389  0.06034  1.06446  0.175249  0.7865
27  0.81044 -0.213067 -0.44897  0.48279 -0.250576  1.4377
28  0.84855 -0.199638 -0.85082  0.48169 -0.742223  0.6115
29  0.65716  0.130297 -0.84172  0.01666 -0.336119 -0.6828
30  0.86319 -0.098907 -1.18924 -0.16484 -0.840025 -1.8059


Site constraints (linear combinations of constraining variables)

       CCA1     CCA2     CCA3     CCA4    CCA5     CCA6
1  -3.32694 -2.89515 -3.29235  2.20626  2.3060  1.19734
2  -1.14185 -3.48021 -0.43333 -1.28383  2.3367 -0.31102
3  -1.93997 -2.25021 -0.99858  0.51805  0.6466  0.28492
4  -1.52691 -1.99021 -0.02728 -0.74518 -0.0490 -0.11014
5  -0.88266 -1.27553  2.02571 -0.61079 -2.4324 -0.61528
6  -1.64941 -2.17812 -0.45378  0.86544  1.3469 -0.17736
7  -1.99263 -1.43304 -0.43014  0.89711 -1.5779  0.09591
9   0.13595 -1.35685  2.65394 -2.09948 -2.8253 -0.16589
10 -1.30135 -0.70616  0.02396 -0.02439 -0.2340  0.56841
11 -2.14664  1.68069 -0.44700 -0.32485 -1.5256  0.75702
12 -1.31891  0.71524  0.03340  0.39201  1.2446 -1.01908
13 -1.57343  1.39536 -0.04734  0.87388 -0.3098 -0.48242
14 -1.96408  1.99860 -0.50752  1.54706 -0.5462 -0.09997
15 -1.38328  1.80655 -0.17564  0.15301 -0.7491  0.98224
16 -0.44297  0.57049  0.29502 -0.89002 -0.1082  1.20984
17 -0.16066  1.13332  0.97402 -0.97270  0.5673 -1.34255
18 -0.13172  0.68153  0.77466 -1.17474  0.4923 -0.06227
19 -0.31662  0.78989  0.20453 -0.49484  1.1835  0.33682
20  0.27681  0.25870  0.29757 -0.98233  1.5082 -0.61280
21  0.72426 -0.11812  0.28673 -0.81779  0.9103  0.70093
22  0.42432  0.18792 -0.10587  0.69590  0.2200  1.32655
23  0.08867  0.16111  2.12318  6.90639  1.5586 -1.01857
24  1.67581  0.01813  3.09214  1.76719 -0.4168 -0.47757
25  0.82273 -0.77842  3.79368  4.54032  1.8147 -2.08635
26  0.91779 -0.27125  0.64570  0.49523 -0.2030  1.35326
27  0.99628 -0.45687 -0.45261  0.38428 -0.1698  1.18499
28  0.96393 -0.23682 -0.80926  0.09871 -0.3918  0.49065
29  0.54853  0.00564 -1.12139 -0.08810 -0.1117 -1.83093
30  0.89306  0.01746 -1.10304  0.25786 -1.0940 -0.84974


Biplot scores for constraining variables

       CCA1     CCA2     CCA3     CCA4     CCA5      CCA6
das  0.8505  0.20713 -0.36616  0.21848 -0.05812 -0.122225
alt -0.7829 -0.51983  0.20652 -0.15363 -0.12246  0.003771
slo -0.6757 -0.38134  0.06041 -0.02902  0.06942  0.276108
flo  0.6712  0.19931 -0.47854  0.18667 -0.15433 -0.386319
pH  -0.1632  0.26541 -0.18504  0.17477 -0.34042  0.310417
har  0.5268  0.47813 -0.16715  0.19889 -0.43653 -0.386105
pho  0.4475 -0.02641  0.38275  0.58922  0.02700 -0.110983
nit  0.6805  0.19160  0.18329  0.15906  0.25741  0.115838
amm  0.4378 -0.08809  0.53506  0.47050  0.21034 -0.174471
oxy -0.7854  0.36744 -0.27958 -0.29226  0.23381 -0.052042
bdo  0.4819 -0.16869  0.50336  0.63234 -0.05626 -0.025082
plot(cca2)

LS0tCnRpdGxlOiAiUmVzdW1lbiBkZSBtw6l0b2RvcyBtdWx0aXZhcmlhZG9zIgpvdXRwdXQ6IAogIGh0bWxfbm90ZWJvb2s6IAogICAgdG9jOiB5ZXMKLS0tCgpMYSBjbGF2ZSBkZWwgdXNvIGRlIGxvcyBtw6l0b2RvcyBtdWx0aXZhcmlhZG9zIGVzdMOhIGVuOgoKIC0gRWwgdGlwbyBkZSBwcm9ibGVtYSBwYXJhIGVsIGN1w6FsIGVsIG3DqXRvZG8gZXN0w6EgcHJvcHVlc3RvLgogLSBFbCBvYmpldGl2byBkZSBjYWRhIHTDqWNuaWNhLgogLSBMYSBlc3RydWN0dXJhIGRlIGRhdG9zIHJlcXVlcmlkYSBwYXJhIHV0aWxpemFyIGNhZGEgdMOpY25pY2EuCiAtIEVsIG11ZXN0cmVvIHJlYWxpemFkbyBwYXJhIGNhZGEgdMOpY25pY2EuCiAtIEVudGVuZGVyIGVsIGNvbmNlcHRvIHN1YnlhY2VudGVzIGEgY2FkYSB0w6ljbmljYS4KCiMjIENsYXNpZmljYWNpw7NuIGRlIHTDqWNuaWNhcwoKLSBNb2RlbG86CiAgJCQKICAgeV8xICsgeV8yICsgXGNkb3RzICsgeV9pCiAgJCQKLSBUw6ljbmljYXM6CiAgICAqIE9yZGVuYWNpw7NuIG5vIHJlc3RyaW5naWRhLgogICAgKiBBbsOhbGlzaXMgYWdsb21lcmF0aXZvIChjbHV0ZXIgYW5hbGlzaXMpLgotIE1vZGVsbzoKICAkJAogICAgeV8xICsgeV8yICsgXGNkb3RzICsgeV9pID0geAogICQkICAKLSBUw6ljbmljYXM6CiAgICAqIEFub3ZhIG11bHRpdmFyaWFkbyAoTUFOT1ZBKS4KICAgICogUHJ1ZWJhIGRlIE1hbnRlbC4KICAgICogQW7DoWxpc2lzIGRpc2NyaW1pbmFudGUuCiAgICAqIFJlZ3Jlc2nDs24gbG9nw61zdGljYS4KICAgICogw4FyYm9sZXMgZGUgY2xhc2lmaWFjacOzbi4KICAgICAgCi0gTW9kZWxvOgogICQkCiAgICAgIHlfMSArIHlfMiArIFxjZG90cyArIHlfaSA9IHhfMSArIHhfMiArIFxjZG90cyArIHhfagogICQkCi0gVMOpY25pY2FzOiAgCiAgICAqIE9yZGVuYWNpw7NuIGNvbiByZXN0cmljY2nDs24uCiAgICAqIENvcnJlbGFjacOzbiBDYW7Ds25pY28uCiAgICAqIMOBcmJvbGVzIGRlIHJlZ3Jlc2nDs24gbXVsdGl2YXJpYWRvcy4KCiMjIE9yZGVuYWNpw7NuIHNpbiByZXN0cmljY2nDs246CgotIFBDQSAoQ29tcG9uZW50ZXMgcHJpbmNpcGFsZXMpCi0gTURTIG8gUENvQSAoRXNjYWxhbWllbnRvIG11bHRpZGltZW5zaW9uYWwgbcOpdHJpY28pCi0gQ0EgKEFuw6Fsc2lzIGRlIGNvcnJlc3BvbmRlbmNpYSkKLSBEQ0EgKEFuw6FsaXNpcyBkZSBjb3JyZXNwb25kZW5jaWEgc2VnbWVudGFkbyBvIGFuw6FsaXNpcyBkZSBjb3JyZXNwb2RlbmNpYSBzaW4gdGVuZGVuY2lhKQotIE5NRFMgKEVzY2FsYW1pZW50byBtdWx0aWRpbWVuc2lvbmFsIG5vLW3DqXRyaWNvKQoKT2JqZXRpdm86CkVzdHJhZXIgZ3JhZGllbnRlcyBkZSBtw6F4aW1hIHZhcmlhY2nDs24uCgojIyBBbsOhbGlzaXMgYWdsb21lcmF0aXZvIChjbHVzdGVyKToKCi0gVmFyaWFzIHTDqW5pY2FzLCBqZXLDoXJxdWljYXMsIGRpdmlzaXZhcywgZXRjLgoKT2JqZXRpdm86CkVzdGFibGVjZXIgZ3J1cG9zIGRlIGVudGVzIHNpbWlsYXJlcy4KCiMjIERpc2NyaW1pbmFjacOzbjoKCi0gTUFOT1ZBIChBbm92YSBtdWx0aXZhcmlhZG8pCi0gQU5PU0lNIChBbsOhbGlzaXMgZGUgc2ltaWxpdHVkKQotIE1hbnRlbCAoUHJ1ZWJhIGRlIE1hbnRlbCkKLSBMUiAoUmVncmVzacOzbiBsb2fDrXN0aWNhKQotIERBIChBbsOhbGlzaXMgZGlzY3JpbWluYW50ZSkKCk9iamV0aXZvOgpQcnVlYmEgcGFyYSBkaWZlcmVuY2lhciBlbnRyZSBncnVwb3MgZGUgZW50aWRhZGVzIHkgcHJlZGVjaXIgCmxhIHBlcnRlbmVuY2lhIGEgdW4gZ3J1cG8uCgojIyBPcmRlbmFjacOzbiBjb24gcmVzdHJpY2Npw7NuOwoKLSBSREEgKEFuw6FsaXNpcyBkZSByZWR1bmRhbmNpYSkKLSBDQ0EgKEFuw6FsaXNpcyBkZSBjb3JyZXNwb25kZW5jaWEgY2Fuw7NuaWNvKQoKT2JqZXRpdm86CkV4dHJhZXIgZ3JhZGllbnRlcyBkZSB2YXJpYWNpw7NuIGVuIHZhcmlhYmxlcyBkZXBlbmRpZW50ZXMgZXhwbGljYWRhcwpwb3IgdmFyaWFibGVzIGluZGVwZW5kaWVudGVzLgoKIyMgRXNjYWxhbWllbnRvIG11bHRpZGltZW5zaW9uYWwgbyBBbsOhbGlzaXMgZGUgQ29vcmRlbmFkYXMgUHJpbmNpcGFsZXMuCgojIyMgTURTIG8gUENvQQpgYGB7cn0KcGVjZXMgPC0gcmVhZC5jc3YyKCJwZWNlcy5jc3YiLCByb3cubmFtZXMgPSAxKQpzdW1Fc3AgIDwtIGFwcGx5KHBlY2VzLDEsc3VtKQpwZWNlcyAgIDwtIHBlY2VzW3N1bUVzcCE9MCxdCnJlcXVpcmUodmVnYW4pCnBlY2VzLnBlcmZpbCA8LSBkZWNvc3RhbmQocGVjZXMsIG1ldGhvZCA9ICJ0b3RhbCIpCm1hdF9kaXN0IDwtIGRpc3QocGVjZXMucGVyZmlsLCBtZXRob2QgPSAibWFuaGF0dGFuIikKcHJpbnQobWF0X2Rpc3QpCm1kcyA8LSBjbWRzY2FsZShtYXRfZGlzdCkKcGxvdChtZHMsIHR5cGUgPSAibiIpCmFibGluZShoID0gMCwgY29sID0gInJlZCIsIGx0eSA9IDIpCmFibGluZSh2ID0gMCwgY29sID0gInJlZCIsIGx0eSA9IDIpCnRleHQobWRzWywxXSwgbWRzWywyXSwgbGFiZWxzID0gcm93Lm5hbWVzKHBlY2VzLnBlcmZpbCkpCmBgYAoKIyMjIG5NRFMKYGBge3J9CnBlY2VzIDwtIHJlYWQuY3N2MigicGVjZXMuY3N2Iiwgcm93Lm5hbWVzID0gMSkKc3VtRXNwICA8LSBhcHBseShwZWNlcywxLHN1bSkKcGVjZXMgICA8LSBwZWNlc1tzdW1Fc3AhPTAsXQpyZXF1aXJlKHZlZ2FuKQpwZWNlcy5wZXJmaWwgPC0gZGVjb3N0YW5kKHBlY2VzLCBtZXRob2QgPSAibm9ybWFsaXplIikKbWF0X2Rpc3QgPC0gZGlzdChwZWNlcy5wZXJmaWwsIG1ldGhvZCA9ICJtaW5rb3dza2kiLCBwID0gMS8zKQpwcmludChtYXRfZGlzdCkKcmVxdWlyZShNQVNTKQpuTURTIDwtIGlzb01EUyhtYXRfZGlzdCkKcGxvdChuTURTJHBvaW50c1ssMV0sIG5NRFMkcG9pbnRzWywyXSwgdHlwZSA9ICJuIikKYWJsaW5lKGggPSAwLCBjb2wgPSAicmVkIiwgbHR5ID0gMikKYWJsaW5lKHYgPSAwLCBjb2wgPSAicmVkIiwgbHR5ID0gMikKdGV4dChuTURTJHBvaW50c1ssMV0sIG5NRFMkcG9pbnRzWywyXSwgbGFiZWxzID0gcm93Lm5hbWVzKHBlY2VzLnBlcmZpbCkpCmBgYAoKCiMjIEFuw6FsaXNpcyBkZSBjb3JyZXNwb25kZW5jaWEgKENBKS4KCi0gTURTOiBFc2NhbGFtaWVudG8gbXVsdGlkbWVuc2lvbmFsLgotIFBDb0E6IEFuw6FsaXNpcyBkZSBjb29yZGVuYWRhcyBwcmluY2lwYWxlcywKLSBDQ0E6IEFuw6FsaXNpcyBkZSBjb3JyZXNwb25kZW5jaWEgY2Fuw7NuaWNvLgotIENWQTogQW7DoWxpc2lzIGRlIHZhcmlhYmxlIGNhbsOzbmljby4KLSBBTk9TSU06IEFuw6FsaXNpcyBkZSBzaW1pbGl0dWQuCgpgYGB7cn0KdDEgPC0gcmVhZC5jc3YyKCJ0YWJsYUNvbnQuY3N2Iiwgcm93Lm5hbWVzID0gMSkKdDEKbWFyZ2luLnRhYmxlKGFzLm1hdHJpeCh0MSksIDEpCm1hcmdpbi50YWJsZShhcy5tYXRyaXgodDEpLCAyKQpjaGkxIDwtIGNoaXNxLnRlc3QodDEpCnByaW50KGNoaTEpCnByaW50KGNoaTEkb2JzZXJ2ZWQpCnByaW50KGNoaTEkZXhwZWN0ZWQpCgpyZXF1aXJlKGNhKQpjYV90MSA8LSBjYSh0MSkKY2FfdDEKcGxvdChjYV90MSkKcGxvdChjYV90MSwgbGluZXMgPSBUUlVFKQpwbG90KGNhX3QxLCBhcnJvd3MgPSBjKFRSVUUsIFRSVUUpKQpgYGAKCgojIyBBbsOhbGlzaXMgZGUgY29ycmVzcG9uZGVuY2lhIHNpbiB0ZW5kZW5jaWEgRENBLgoKYGBge3J9CmVqZW1wbG8xIDwtIHJlYWQuY3N2MigiZWplbXBsbzFfc2l0aW8uY3N2Iiwgcm93Lm5hbWVzID0gMSkKcm93Lm5hbWVzKGVqZW1wbG8xKSA8LSBwYXN0ZSgiU2l0aW8iLCByb3cubmFtZXMoZWplbXBsbzEpKQplamVtcGxvMQpyZXF1aXJlKGNhKSAKY2ExIDwtIGNhKGVqZW1wbG8xKQpjYTEKcGxvdChjYTEpCnBsb3QoY2ExLCBsaW5lcyA9IGMoVFJVRSwgRkFMU0UpKQpwbG90KGNhMSwgYXJyb3dzID0gYyhUUlVFLCBGQUxTRSkpCnJlcXVpcmUodmVnYW4pCmRjYTEgPC0gZGVjb3JhbmEoZWplbXBsbzEpCmRjYTEKcGxvdChkY2ExKQpgYGAKCiMjIEFuw6FsaXNpcyBkZSByZWR1bmRhbmNpYQpgYGB7cn0KcGVjZXMgICA8LSByZWFkLmNzdjIoInBlY2VzLmNzdiIsIHJvdy5uYW1lcyA9IDEpCmFtYmllbnQgPC0gcmVhZC5jc3YyKCJhbWJpZW50YWxlcy5jc3YiLGVuYz0ibGF0aW4xIixyb3cubmFtZXM9MSkKCnN1bUVzcCAgPC0gYXBwbHkocGVjZXMsMSxzdW0pCnBlY2VzICAgPC0gcGVjZXNbc3VtRXNwIT0wLF0KYW1iaWVudCA8LSBhbWJpZW50W3N1bUVzcCE9MCxdCgpyZXF1aXJlKHZlZ2FuKQpwZWNlcy5oZWxsIDwtIGRlY29zdGFuZChwZWNlcywgImhlbGwiKQpwY2EgPC0gcmRhKHBlY2VzLmhlbGwpCnByaW50KHN1bW1hcnkocGNhKSkKcGxvdChwY2EpCgpyZGExIDwtIHJkYShwZWNlcy5oZWxsIH4gZGFzLCBkYXRhID0gYW1iaWVudCkKcHJpbnQoc3VtbWFyeShyZGExKSkKcGxvdChyZGExKQoKcmRhMiA8LSByZGEocGVjZXMuaGVsbCB+IC4sIGRhdGEgPSBhbWJpZW50KQpwcmludChzdW1tYXJ5KHJkYTIpKQpwbG90KHJkYTIpCgpgYGAKCgojIyBBbsOhbGlzaXMgZGUgY29ycmVzcG9uZGVuY2lhIGNhbsOzbmljbwoKYGBge3J9CnBlY2VzICAgPC0gcmVhZC5jc3YyKCJwZWNlcy5jc3YiLCByb3cubmFtZXMgPSAxKQphbWJpZW50IDwtIHJlYWQuY3N2MigiYW1iaWVudGFsZXMuY3N2IixlbmM9ImxhdGluMSIscm93Lm5hbWVzPTEpCgpzdW1Fc3AgIDwtIGFwcGx5KHBlY2VzLDEsc3VtKQpwZWNlcyAgIDwtIHBlY2VzW3N1bUVzcCE9MCxdCmFtYmllbnQgPC0gYW1iaWVudFtzdW1Fc3AhPTAsXQoKcmVxdWlyZSh2ZWdhbikKCmNjYTEgPC0gY2NhKHBlY2VzKQpwcmludChzdW1tYXJ5KGNjYTEpKQoKcGxvdChjY2ExKQoKY2NhMiA8LSBjY2EocGVjZXMsIGFtYmllbnQpCnByaW50KHN1bW1hcnkoY2NhMikpCgpwbG90KGNjYTIpCmBgYAoKCgo=